-
近年来,人工湿地作为一种绿色环保型生态系统而备受关注。通过基质、土壤、植物和微生物的物理、化学、生物三重协同作用,人工湿地可用于城市污水、生活污水以及农业排放污水等的净化处理[1-2]。
氮是引起水体富营养化的主要因子[3]。研究氮在人工湿地中的时空分布特征、迁移转化规律、去除机制及影响因素对于湿地系统的水质管控具有重要意义[4-6]。人工湿地水体中氮污染物的去除和转化与微生物硝化、反硝化作用和植物吸收有关,很大程度上受各种理化性质的影响[7]。如水体酸碱度(pH)对氮的去除影响较大,pH升高,会增加作为生化反应基质底物的游离氨浓度,抑制氨氧化菌的活性和硝化反应的进行[8-9],水体碱性过高时,植物吸收作用也会减弱,可降低氮的去除率[10]。水体电导率(EC)与离子有关,高盐度会导致微生物细胞在高渗透压下脱水而不利于其存活,同时也会使代谢酶活性受阻,影响氮的去除[11-12]。氧化还原电位(Eh)可较好地反映好氧与厌氧环境,从而调控硝化和反硝化反应过程[13]。溶解氧(DO)对氮的去除也有一定影响,研究认为,高浓度的DO有利于硝化反应,反之,低浓度的DO则更有利于反硝化过程。但也有研究表明,在好氧条件下,硝化和反硝化反应可交互影响氮的转化过程[14-15]。此外,温度(T)通过影响微生物活性,也可影响氮的去除,有报告显示,水体温度升高有利于提升微生物活性,从而提高水体氮的去除率[16]。
人工湿地水体中不同形态氮的去除受多种因素的共同影响[17]。然而,目前关于基于污水处理厂处理尾水的人工湿地系统中氮分布特征的研究还十分有限。研究组合人工湿地水体多种理化因子与氮形态的分布之间的关系,对于探究湿地氮污染迁移转化规律、优化组合人工湿地系统构建模式具有重要的意义。本研究利用GIS中克里格插值法,研究了天津临港人工湿地水体中DO、Eh、pH、EC、T和不同形态氮的分布特征,分析了pH、EC、Eh和DO对不同形态氮分布间的影响,采用单因子指数法对湿地水体污染状况进行了评价,为改善该湿地系统的水质、优化湿地系统的结构和功能提供参考。
基于污水厂尾水的人工湿地系统中水体氮的水流方向分布特征及污染评价
Nitrogen distribution characteristics and pollution assessment in water along the water flow direction in a constructed wetland system treating the tailwater from wastewater treatment plants
-
摘要: 天津临港人工湿地是以污水厂尾水为水源的组合人工湿地,为探究其水体形态氮的分布特征和污染状况,以该湿地系统为研究对象,采集并分析了湿地水样,基于GIS克里格插值法,对湿地水体形态氮和典型理化性质的分布和污染特征进行了研究,结合单因子污染指数法评价了水体污染程度。结果表明:湿地水体TN浓度为0.657~5.576 mg·L−1,其中
${{\rm{NO}}_3^ - }$ -N (0.095~3.920 mg·L−1)浓度相对较高,占TN的49.2%;沿水流方向,TN、${{\rm{NO}}_3^ - }$ -N和${{\rm{NO}}_2^ -} $ -N的分布趋势基本一致,从入水口至景观湖呈逐渐降低趋势;${{\rm{NH}}_4^ +} $ -N的分布相对复杂,在潜流和表流湿地下游与景观湖交汇处浓度最高,表流湿地浓度最低;pH和EC分别对${{\rm{NH}}_4^ + }$ -N和${{\rm{NO}}_3^ - }$ -N的分布特征具有较大的影响作用。根据单因子污染指数法,湿地水体TN超标(Pi>1),调节塘TN污染最为严重,调节塘可作为TN优控区。以上结果有助于深入认识以污水厂尾水为水源的组合人工湿地中氮污染物的赋存形态及分布特征。Abstract: Tianjin Lingang constructed wetland is a hybrid constructed wetland based on the tailwater of wastewater treatment plants. In order to explore the distribution characteristics and pollution status of nitrogen in water, the water samples in this wetland system were collected and analyzed. Based on the GIS Kriging interpolation method, the distribution and pollution characteristics of nitrogen species and typical physical and chemical properties of wetland water were studied; then the degree of water pollution was evaluated by single factor pollution index method. The results indicated that TN concentration in water of wetland was in the range of 0.657 to 5.576 mg·L−1, of which${\rm{NO}}_3^ - $ -N concentration was relatively high (0.095~3.920 mg·L-1) and accounted for 49.2% of TN. Along the water flow direction, the distribution of TN,${\rm{NO}}_3^ - $ -N and${\rm{NO}}_2^ - $ -N was similar, which showed a gradual decrease from the entrance to the landscape lake. The distribution of${\rm{NH}}_4^ + $ -N was relatively complicated. The highest concentration of${\rm{NH}}_4^ + $ -N occurred at the junction between landscape lake and the lower reaches of subsurface and surface flow wetlands, while the${\rm{NH}}_4^ + $ -N concentration in the surface-flow wetland was the lowest. pH and EC had relative high effect on the distribution characteristics of${\rm{NH}}_4^ + $ -N and${\rm{NO}}_3^ - $ -N. According to the single factor pollution index method, TN concentration in the wetland exceeded the standard (Pi >1), and the TN pollution was most serious in the regulation pond, which could be used as a priority control area for TN. The above results are conducive to deeply understand the occurrence and distribution characteristics of nitrogen pollutants in the hybrid constructed wetland treating the tailwater from the wastewater treatment plant. -
表 1 湿地水体不同形态氮浓度统计值
Table 1. Statistics of various nitrogen forms of water in the wetland
mg·L−1 统计值 TN ${\rm{NH}}_4^ + $ -N${\rm{NO}}_3^ - $ -N${\rm{NO}}_2^ - $ -N均值 2.180 0.354 1.082 0.008 标准差 0.963 0.171 0.868 0.011 最小值 0.657 0.054 0.095 0.001 最大值 5.576 0.885 3.920 0.054 变异系数/% 44.17 48.31 80.22 137.50 -
[1] KIVAISI A K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review[J]. Ecological Engineering, 2001, 16(4): 545-560. doi: 10.1016/S0925-8574(00)00113-0 [2] HE Y T, PENG L, HUA Y M, et al. Treatment for domestic waste water from university dorms using a hybrid constructed wetland at pilot scale[J]. Environmental Science and Pollution Research, 2018, 25(9): 8532-8541. doi: 10.1007/s11356-017-1168-7 [3] 蔡履冰. 太湖流域水体富营养化成因及防治对策的初步研究[J]. 中国环境监测, 2003, 19(3): 52-55. doi: 10.3969/j.issn.1002-6002.2003.03.019 [4] LI F M, LU L, ZHENG X, et al. Enhanced nitrogen removal in constructed wetlands: Effects of dissolved oxygen and step-feeding[J]. Bioresource Technology, 2014, 169: 395-402. doi: 10.1016/j.biortech.2014.07.004 [5] JIA L X, WANG R G, FENG L K, et al. Intensified nitrogen removal in intermittently-aerated vertical flow constructed wetlands with agricultural biomass: Effect of influent C/N ratios[J]. Chemical Engineering Journal, 2018, 345: 22-30. doi: 10.1016/j.cej.2018.03.087 [6] YANG Z C, YANG L H, WEI C J, et al. Enhanced nitrogen removal using solid carbon source in constructed wetland with limited aeration[J]. Bioresource Technology, 2018, 248: 98-103. doi: 10.1016/j.biortech.2017.07.188 [7] SAEED T, SUN G Z. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media[J]. Journal of Environmental Management, 2012, 112: 429-448. doi: 10.1016/j.jenvman.2012.08.011 [8] ZHOU Y, OEHMEN A, LIM M, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J]. Water Research, 2011, 45(15): 4672-4682. doi: 10.1016/j.watres.2011.06.025 [9] ZENG W, ZHANG Y, LI L, et al. Control and optimization of nitrifying communities for nitritation from domestic wastewater at room temperatures[J]. Enzyme and Microbial Technology, 2009, 45(3): 226-232. doi: 10.1016/j.enzmictec.2009.05.011 [10] YIN X L, ZHANG J, ZHEN H, et al. Effect of photosynthetically elevated pH on performance of surface flow-constructed wetland planted with phragmites australis[J]. Environmental Science and Pollution Research, 2016, 23(15): 24-31. [11] 刘成论, 徐龙君, 鲜晓红, 等. 电导法确定水溶液中盐的浓度[J]. 重庆大学学报, 1999, 22(2): 126-130. [12] 邱金泉, 王静, 张雨山. 人工湿地处理高盐度污水的适用性及研究进展[J]. 工业水处理, 2009, 29(11): 1-3. doi: 10.3969/j.issn.1005-829X.2009.11.001 [13] ZHAI J, ZOU J S, HE Q, et al. Variation of dissolved oxygen and redox potential and their correlation with microbial population along a novel horizontal subsurface flow wetland[J]. Environmental Technology, 2012, 33(17): 1999-2006. doi: 10.1080/09593330.2012.655320 [14] ROBERTSON L A, KUENEN J G. Thiosphaera pantotropha gen. nov.sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium[J]. Microbiology, 1983, 129(9): 2847-2855. doi: 10.1099/00221287-129-9-2847 [15] COBAN O, KUSCHK P, KAPPELMEYER U, et al. Nitrogen transforming community in a horizontal subsurface-flow constructed wetland[J]. Water Research, 2001, 31(4): 351-409. [16] 谢飞, 黄磊, 高旭, 等. 潜流人工湿地对微污染河水的净化效果[J]. 环境工程学报, 2013, 7(1): 65-71. [17] 张涛, 宋新山. 潜流人工湿地理化性质及不同形态氮素的空间分布[J]. 生态环境学报, 2010, 19(6): 1343-1347. doi: 10.3969/j.issn.1674-5906.2010.06.015 [18] 王书锦, 刘云根, 梁启斌, 等. 罗时江河口湿地沉积物磷的空间分布及污染风险评价[J]. 环境工程学报, 2016, 10(2): 955-962. doi: 10.12030/j.cjee.20160269 [19] 刘新, 许梦文, 赵珍, 等. 鄱阳湖蝶形湖泊水体氮磷等的变化及污染初步评价[J]. 长江流域资源与环境, 2017, 26(8): 1189-1198. doi: 10.11870/cjlyzyyhj201708009 [20] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [21] 邱昭政, 罗专溪, 赵艳玲, 等. 溶氧对富集培养的河口湿地表层沉积物氨氧化菌多样性及氨氧化速率的影响[J]. 环境科学, 2013, 34(2): 532-539. [22] 雒文生. 水环境保护[M]. 北京: 中国水利水电出版社, 2009. [23] 孙桂燕, 刘翔, 李兰海. 开都河水理化性质的空间分布特征[J]. 干旱区研究, 2017, 34(2): 259-265. [24] SUTHERSAN S S. Natural and Enhanced Remediation Systems[M]. Boca Raton: CRC Press, 2001. [25] 魏佳明. 表流湿地细菌及反硝化细菌群落结构研究[D]. 北京: 中国林业科学研究院, 2017. [26] GRAY N F. Biology of Wastewater Treatment[M]. London: Imperial College Press, 2004: 282-290. [27] SHAMMAS N K. Interactions of temperature, pH and biomass on the nitrification process[J]. Water Pollution Control Federation, 1986, 58(1): 52-59. [28] 郑兴灿, 李亚新. 污水除磷脱氮技术[M]. 北京: 中国建筑工业出版社, 1998: 50-60. [29] 甄贞, 郭志英, 赵颖慧, 等. 基于局域模型的凉水国家自然保护区土壤全氮空间分布[J]. 应用生态学报, 2016, 27(2): 549-558. [30] 贾卓, 杨国华, 张赫轩, 等. 挠力河流域地下水氮污染特征分析[J]. 环境污染与防治, 2018, 40(4): 418-422. [31] BRIX H. Treatment of wastewater in the rhizosphere of wetland plants-the root-zone method[J]. Water Science and Technology, 1987, 19: 107-118. [32] 陈旭良, 郑平, 金仁村, 等. pH和碱度对生物硝化影响的探讨[J]. 浙江大学学报, 2005, 31(6): 755-75. [33] 吴海明. 人工湿地的碳氮磷循环过程及其环境效应[D]. 济南: 山东大学, 2014. [34] PANSWAD T, ANAN C. Impact of high chloride waste water on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds[J]. Water Research, 1999, 33(5): 1165-1172. doi: 10.1016/S0043-1354(98)00314-5