-
常规硝化反硝化需要在2个反应器内完成,有研究[1]表明,在有氧条件下,不同的生物处理系统中可能会出现同步硝化反硝化(simultaneous nitrification and denitrification, SND),在提高TN的去除率的同时,可降低碳源投加量。同步硝化反硝化与多种因素有关,如DO、pH、C/N、温度、污泥龄等,作为一种经济有效的工艺,目前已成为研究及应用的热点。在MBBR工艺中好氧悬浮载体区发生SND现象被多次报道[2],北方某采用新型悬浮载体强化脱氮除磷工艺(A2/O-MBBR)污水处理厂在进水碳源不足、总回流比为200%、碳源投加量为10 mg·L−1的条件下,TN去除率均值达到89.71%,存在明显的SND现象,强化了系统整体脱氮能力[3]。
针对反硝化除磷技术的研究在我国起步较晚,但由于其高效的除磷特性及较高的碳源利用率而在污水处理领域备受关注,在反硝化除磷过程中,反硝化聚磷菌(DPB)可以在缺氧条件下,利用硝酸盐作为电子受体吸收磷,其代谢特性与常规好氧聚磷菌(PAO)相似,除磷效能也与好氧聚磷相当[4]。目前,关于反硝化除磷工艺的研究主要集中在利用A2/O、SBR、UCT等工艺自主培养驯化DPB,研究DPB的培养驯化方法、富集条件以及影响因素等。有研究[2]表明,适当的好氧条件有利于维持活性污泥中DPB的反硝化聚磷活性,在连续厌氧/缺氧运行条件下,DPB会逐渐失去聚磷和释磷能力[5]。因此,后续的研究发现,具有脱氮除磷功能的污水处理工艺在厌氧、缺氧、好氧交替的条件下运行,活性污泥中会存在数量可观的反硝化聚磷菌[6]。
近年来,移动床生物膜工艺(MBBR)在国内广泛应用,尤其在A2/O工艺的嵌入式改造上有大量应用案例。由于MBBR多与活性污泥相嵌合形成泥膜复合工艺,使得系统内形成了悬浮态泥龄和附着态泥龄的双泥龄结构,可有效去除有机物及氮、磷等物质,投加悬浮载体后形成的泥膜复合工艺对生活污水以及工业废水有均有良好的处理效果。而悬浮载体生物膜分层分布的特点,也为其存在SND奠定了良好基础。
北方某污水处理厂,其设计规模10万 m3·d−1,2010年采用改良A2/O-MBBR工艺进行升级改造,出水执行一级A标准,已稳定运行8 a。本研究首先针对污水厂的处理效果分析了实际TN、TP去除率与理论值的差异,之后通过硝化小试及反硝化除磷实验分别验证了SND及反硝化除磷现象的存在,并通过高通量测序为SND及DPB现象提供微观保证,为类似污水厂运行及相关技术的工程应用提供基础数据。
北方某污水厂MBBR工艺升级改造后的高效脱氮除磷效果
Effect of high efficiency nitrogen and phosphorus removal in a wastewater treatment plant in north China
-
摘要: 为研究北方某污水厂经过MBBR提标改造后,在秋冬季进水碳源较低的条件下生化段脱氮除磷率高于理论值的原因,采用沿程水质测定法及小试实验的方法验证其脱氮除磷效果,并通过基于16S rRNA的高通量测序对好氧段微生物菌群进行分析。结果表明,系统在好氧区存在显著的TN去除,去除率约占15%~20%,在缺氧区存在显著的TP去除,去除率高达63.04%,显示系统内发生了同步硝化反硝化(SND)和反硝化除磷现象。通过小试实验验证了好氧SND现象主要来自于悬浮载体,得益于悬浮载体生物膜功能菌分层分布;反硝化除磷现象则得益于系统较长的缺氧停留时间及较短的泥龄。系统中SND和反硝化除磷的存在是系统在低碳源消耗条件下取得高效脱氮除磷效果的主要原因;微生物菌群分析验证了SND现象主要来源于悬浮载体;悬浮载体上硝化菌群相对丰度为28.56%,是污泥的14倍,反硝化菌相对丰度约8.34%,为SND效果的发生提供了微观保证;污泥中存在Candidatus Accumulibacter、Acinetobacter和Tetrasphaera,为该污水厂存在反硝化除磷及高效除磷现象提供了微观证据。Abstract: In order to study the reason why the nitrogen and phosphorus removal rate of a sewage plant in north China was higher than the theoretical value under the condition that the carbon source of water inlet was lower in autumn and winter after MBBR upgrading. The removal effect of nitrogen and phosphorus was verified by the method of water quality determination along the route and small experiments, and the microbial community in aerobic segment was analyzed by high-throughput sequencing based on 16S rRNA. The results show that TN removal rate of the system is about 15%~20% in aerobic area, in anoxic zone, TP removal rate was 63.04%, which indicated that SND and DPB occurred in the system. The lad-scale experiment showed that the phenomenon of aerobic SND mainly came from suspended carrier, which was due to the layered distribution of functional bacteria on the biofilm of suspended carrier and the enrichment of nitrifying bacteria and denitrifying bacteria at the same time. DPB phenomenon is due to the long anoxic residence time and short mud age, which makes DPB bacteria enriched in the system. The existence of SND and DPB in the system is the main reason for the high efficiency of nitrogen and phosphorus removal. Microbiological analysis verified that the main source of SND phenomenon was the suspension carrier, the abundance of the nitrifying bacteria in the suspended carrier was 28.56%, which was 14 times higher than that of in the sludge, and the denitrifying bacteria accounted for about 8.34%, which provided the guarantee for the SND effect in aerobic zone. The presence of Candidatus Accumulibacter, Acinetobacter and Tetrasphaera in the sludge provided microscopic evidence for the denitrifying phosphorus removal phenomenon and high phosphorus removal efficiency in the system.
-
表 1 污水厂生化段设计水质
Table 1. Design water quality of the biological tank in WWTP
mg·L−1 水质参数 COD BOD5 ${\rm{NH}}_4^{+} $ -NTN TP 设计进水 800 400 80 100 12 秋冬进水 391 188 54 65 4.8 设计出水 50 10 5(8) 15 0.5 控制出水 35 8 1.5 12 0.3 注:本项目针对出水NH3-N在不同季节设置不同浓度限值,夏季要求出水标准为5 mg·L−1,冬季则为8 mg·L−1。 表 2 污水厂生化段水质
Table 2. Actual water quality of biological tank in WWTP
mg·L−1 检测样品 COD BOD5 ${\rm{NH}}_4^ + $ -N${\rm{NO}}_3^ - $ -NTN TP 实际进水水质 390.7±109.6 188.1±35.6 54.1±5.8 3.7±1.7 64.9±11.9 4.8±1.1 实际出水水质 20.1±14.1 3.0±2.0 0.37±0.45 7.8±1.2 8.2±2.0 0.39±0.25 -
[1] 郭洢含. 强化 SBR 同步硝化反硝化处理生活污水脱氮效能研究[D]. 哈尔滨: 东北农业大学, 2018. [2] 张新波, 宋姿, 祁丽, 等. 聚氨酯海绵载体填充率对 MBBR 脱氮的影响[J]. 中国给水排水, 2017, 33(15): 78-81. [3] 杨晓美, 宋美芹, 吴迪, 等. 新型悬浮载体强化脱氮除磷技术用于高标准污水处理[J]. 中国给水排水, 2017, 33(16): 97-102. [4] 王亚宜, 彭永臻, 潘绵立, 等. 生物除磷系统聚糖菌的代谢机理及菌群结构[J]. 哈尔滨工业大学学报, 2008, 40(8): 1319-1324. doi: 10.3321/j.issn:0367-6234.2008.08.031 [5] 豆俊峰, 罗固源, 季铁军. SUFR脱氮除磷系统中反硝化聚磷菌的性能研究[J]. 水处理技术, 2005, 31(6): 28-31. doi: 10.3969/j.issn.1000-3770.2005.06.008 [6] 王亚宜, 王淑莹, 彭永臻. MLSS、pH及 ${{\rm{NO}}^-_2 }$ -N对反硝化除磷的影响[J]. 中国给水排水, 2005, 21(7): 47-51. doi: 10.3321/j.issn:1000-4602.2005.07.013[7] 杨晓美, 宋美芹, 吴迪, 等. 新型悬浮载体强化脱氮除磷技术在地表IV类水处理中的应用[J]. 中国给水排水, 2017, 33(16): 97-102. [8] 杨宇星, 吴迪, 宋美芹, 等. 新型MBBR用于类地表IV类水排放标准升级改造工程[J]. 中国给水排水, 2017, 33(14): 93-98. [9] 吴迪, 李闯修. 北方某污水厂Bardenpho-MBBR改造运行分析[J]. 中国给水排水, 2018, 34(9): 106-110. [10] 曹文娟, 徐祖信, 王晟. 生物膜中同步硝化反硝化的研究进展[J]. 水处理技术, 2012, 38(1): 1-5. doi: 10.3969/j.issn.1000-3770.2012.01.001 [11] 郑照明, 李军, 杨京月, 等. 不同C/N比和碳源种类条件下的SNAD生物膜脱氮性能[J]. 中国环境科学, 2017, 37(4): 1331-1338. doi: 10.3969/j.issn.1000-6923.2017.04.017 [12] CAO Y, ZHANG C, RONG H, et al. The effect of dissolved oxygen concentration(DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR)[J]. Water Research, 2017, 108: 86-94. doi: 10.1016/j.watres.2016.10.063 [13] 叶建锋. 废水生物脱氮处理新技术[M]. 北京: 化学工业出版社, 2006. [14] 周少奇. 同时硝化反硝化生物脱氮技术研究进展[J]. 环境技术, 2002, 20(2): 38-40. doi: 10.3969/j.issn.1004-7204.2002.02.011 [15] KLANGDUEN P, KELLER J. Study of factors affecting simultaneous nitrification and denitrification(SND)[J]. Water Science and Technology, 1999, 39(6): 61-68. doi: 10.2166/wst.1999.0262 [16] 杨帅, 杨凤林, 付志敏. 移动床膜生物反应器同步硝化反硝化特性[J]. 环境科学, 2009, 30(3): 803-808. doi: 10.3321/j.issn:0250-3301.2009.03.030 [17] HU J Y, ONG S L, NG W J, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors[J]. Water Research, 2003, 37(14): 3463-3471. doi: 10.1016/S0043-1354(03)00205-7 [18] 白少元, 张华, 林雨倩, 等. 活性污泥反硝化除磷性能的影响因素研究[J]. 中国给水排水, 2013, 29(15): 49-54. doi: 10.3969/j.issn.1000-4602.2013.15.011 [19] 吕小梅. 反硝化除磷菌群结构与工艺调控策略[D]. 哈尔滨: 哈尔滨工业大学, 2014. [20] 王亚宜, 彭永臻, 王淑莹, 等. 碳源和硝态氮浓度对反硝化聚磷的影响及ORP的变化规律[J]. 环境科学, 2004, 25(4): 54-58. doi: 10.3321/j.issn:0250-3301.2004.04.011 [21] 王晓莲, 王淑莹, 彭永臻. A2/O工艺强化反硝化除磷体系中微生物特性分析[J]. 应用与环境生物学报, 2007, 13(3): 401-407. doi: 10.3321/j.issn:1006-687X.2007.03.025 [22] VAN KESSEL M A H J, SPETH D R, ALBERTSEN M, et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7583): 555-559. doi: 10.1038/nature16459 [23] DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583): 504-509. doi: 10.1038/nature16461 [24] 李博晓. 反硝化除磷系统中聚磷菌菌群功能与群落分布研究[D]. 北京: 北京工业大学, 2013. [25] KONG Y, NIELSEN J L, NIELSEN P H. Microautoradiographic study of rhodocyclus-related polyphos-phate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants[J]. Applied and Environmental Microbiology, 2004, 70(9): 5383-5390. doi: 10.1128/AEM.70.9.5383-5390.2004 [26] WAGNER M, ERHART R, MANZ W, et al. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge[J]. Applied & Environmental Microbiology, 1994, 60(3): 792-800. [27] OKUNUKI S, KAWAHARASAKI M, TANAKA H, et al. Changes in phosphorus removing performance and bacterial community structure in an enhanced biological phosphorus removal reactor[J]. Water Research, 2004, 38(9): 2433-2439. doi: 10.1016/j.watres.2004.02.008 [28] KAMAGATA Y, LIU W T, NAKAMURA K, et al. Tetrasphaera elongata sp. nov. a polyphosphate-accumulating bacterium isolated from activated sludge[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(3): 883-887. [29] MASZENAN A M, SEVIOUR R J, PATEL B K, et al. THREE isolates of novel polyphosphate-accumulating gram-positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp. nov. and Tetrasphaera australiensis sp. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50(2): 593-603. doi: 10.1099/00207713-50-2-593