-
我国《水污染防治行动计划》明确规定,在重点的湖泊(水库)等水质要求敏感的区域排放的污水必须达到城镇污水处理厂污染物排放标准(GB 18918-2002)一级A排放要求[1]。虽然目前我国污水处理设施在数量上已达4 000多个,但在处理能力以及处理设施上的发展并不平衡。目前部分城镇污水处理厂在出水一级A提标改造中对氮磷的去除效果并不十分理想,需要进一步研发新技术以改进现有技术,提高脱氮除磷效率[2]。藻菌共生体系是利用藻类和细菌2类生物之间在协同作用处理污水的一种生态系统[3]。污水中的有机物经好氧菌分解产生
${\rm{NH}}_4^ + $ -N、$ {\rm{PO}}_4^{3 - } $ 和CO2等无机物,为藻类提供营养,合成自身细胞组织;藻类光合作用释放的O2又可供好氧菌继续氧化有机物[4]。藻菌共生体系能有效去除污水中含碳、氮、磷等的污染物,具有运行成本低、无二次污染以及藻、菌生物资源可再利用的特点,在城镇污水处理研究中受到广泛关注并得到了实际应用[5]。碳源是藻类与菌类进行生命活动时不可或缺的条件之一。藻类可利用无机碳源进行光合作用合成有机碳[6],菌类利用有机或无机碳源为细胞生长提供能量以及合成碳骨架[7],因此,外在碳源的缺乏直接影响藻菌共生体系的稳定生长及其污水处理效率。然而,我国城镇污水处理厂的进水COD普遍偏低,部分进水甚至低于100 mg·L−1。因此,在藻菌共生体系等生物处理工艺运行中可考虑通过补充合适的碳源来进一步提升脱氮除磷效率[8]。
本研究以某城镇污水厂中鉴定出的优势脱氮除磷藻种短带鞘藻(Oedogonium brevicingulatum)为藻源,以该厂好氧池中活性污泥为菌源,构建并优化了短带鞘藻-活性污泥共生体系。从乙酸钠、葡萄糖、碳酸钠和碳酸氢钠4种外加碳源中筛选出最适宜该体系的外加碳源,对其脱氮除磷处理效果进行了评价,并使用其处理某城镇污水,以期为该藻菌共生技术的实际应用提供技术参数[9]。
碳酸氢钠对短带鞘藻-活性污泥共生体系在城镇污水脱氮除磷中的促进作用
Acceleration of NaHCO3 on the removal of nitrogen and phosphorus in urban sewage by the symbiosis system of Oedogonium brevicingulatum and activated sludge
-
摘要: 藻菌共生技术在污水处理中具有高效低耗、资源可利用等特点。目前,我国城镇污水厂中进水COD普遍偏低,影响了出水一级A(GB 18918-2002)提标改造中脱氮除磷的效果。在构建短带鞘藻-活性污泥共生体系的基础上,采用补充外加碳源促进其对城镇污水的脱氮除磷效果。结果表明,短带鞘藻-活性污泥共生体系的优化工艺条件为藻菌干重比3∶1、初始生物量0.3 g·L−1、曝气量0.2 L·min−1、曝气间歇时间6 h∶6 h。经过比较,确定碳酸氢钠比乙酸钠、葡萄糖和碳酸钠更适合作为该共生体系的外加碳源。当碳酸氢钠投加量为100 mg·L−1时,该体系对模拟中污水中氨氮(
${{\rm{NH}}_4^ + }$ -N)、总氮(TN)、总磷(TP)和COD的去除率分别为98.7%、78.6%、71.6%和100%。Monod动力学方程计算拟合结果证实,碳酸氢钠对短带鞘藻生长的促进作用比对活性污泥显著。将该共生体系置于自行设计的固定化藻菌共生生物膜反应器处理某城镇污水厂污水,经外加碳酸氢钠提升进水中碳源浓度后,出水中氮磷等指标均可达到城镇污水处理厂污染物一级A排放标准。Abstract: The symbiosis system of algae and bacteria has the advantages of high efficiency, low consumption, and resource utilization in sewage treatment. However, the COD of most urban sewage treatment plants has been generally lower than expected thus reduces the removal rate of nitrogen and phosphorus in the upgrading process of achieving the level A discharged standard of urban sewage (GB 18918-2002). On the basis of constructing a symbiosis system of O. brevicingulatum and activated sludge, an external carbon source was used to promote its removal effect of nitrogen and phosphorus from urban sewage. The results showed that the optimized process conditions for the symbiosis system of O. brevicingulatum and activated sludge were as follow: the dry weight ratio of algae and bacteria was 3∶1, the initial biomass was 0.3 g·L−1, the aeration rate was 0.2 L·min−1, and the aeration and intermission interval was 6 h/6 h. After comparison of the four external carbon sources, NaHCO3 was determined as more suitable carbon source than CH3COONa, C6H12O6 and Na2CO3. Adding 100 mg·L−1 NaHCO3 in the simulated sewage, the removal rates of ammonia nitrogen (${\rm{NH}}_4^ + $ -N), total nitrogen (TN), total phosphorus (TP) and COD were 98.7%, 78.6%, 71.6% and 100%, respectively. Through evaluating the effect of NaHCO3 on the growth of O. brevicingulatum and activated sludge by Monod kinetic method, the growth acceleration of O. brevicingulatum by NaHCO3 was more than that of activated sludge. Furthermore, a self-designed biofilm reactor with the symbiosis system was used to treat actual urban sewage, the nitrogen and phosphorus indicators in the effluent could reach the level A discharged standard of urban sewage after when NaHCO3 was added to increase the carbon source concentration in the influent. -
-
[1] 吴舜泽, 徐敏, 马乐宽, 等. 重点流域“十三五”规划落实“水十条”的思路与重点[J]. 环境保护, 2015, 43(18): 14-17. [2] 周岳溪. 城镇和农村污水处理适用新技术及工程应用[J]. 农业环境科学学报, 2015, 34(7): 1340. [3] ANGIONI S, MILLIA L, MUSTARELII P, et al. Photosynthetic microbial fuel cell with polybenzimidazole membrane: Synergy between bacteria and algae for wastewater removal and biorefinery[J]. Heliyon, 2018, 4(3): e00560. doi: 10.1016/j.heliyon.2018.e00560 [4] 易涛, 山鹰, 黄渤, 等. 藻菌共培养对小球藻生长及苯酚降解的影响[J]. 环境工程学报, 2020, 14(6): 1679-1687. doi: 10.12030/j.cjee.201909082 [5] 陈红芬, 任洪艳, 刘方舟, 等. 小球藻和活性污泥共培养体系处理养殖废水[J]. 应用与环境生物学报, 2019, 25(4): 950-958. [6] 脱金华. 利用市政污水和外加碳源培养小球藻的条件优化研究[D]. 无锡: 江南大学, 2018. [7] WANG X, CHEN Z, SHEN J, et al. Effect of carbon source on pollutant removal and microbial community dynamics in treatment of swine wastewater containing antibiotics by aerobic granular sludge[J]. Chemosphere, 2020, 260: 127544. doi: 10.1016/j.chemosphere.2020.127544 [8] 胡洁. 某污水处理厂外碳源投加系统和污泥离心脱水系统的优化控制[D]. 绵阳: 西南科技大学, 2018. [9] 黄杉, 怀静, 吴娟, 等. 碳源补充促进人工湿地脱氮研究进展[J]. 水处理技术, 2018, 44(1): 13-16. [10] 唐斐. 城镇污水厂中优势藻种的鉴定及其脱氮除磷效果评价[D]. 湘潭: 湘潭大学, 2014. [11] 高静思, 朱佳, 董文艺. 光照对我国常见藻类的影响机制及其应用[J]. 环境工程, 2019, 37(5): 111-116. [12] MAJONE M, VALENTINO F, LORILI L, et al. Effect of the temperature in a mixed culture pilot scale aerobic process for food waste and sewage sludge conversion into polyhydroxyalkanoates[J]. Biotechnology, 2020, 323: 54-61. [13] 李晓伟, 魏群, 陈延飞, 等. pH对藻类生物膜脱氮除磷的影响研究[J]. 环境工程, 2016, 34(8): 74-78. [14] 魏佳虹, 孙宝盛, 赵双红, 等. pH对SBR处理效果及活性污泥微生物群落结构的影响[J]. 环境工程学报, 2017, 11(3): 1953-1958. doi: 10.12030/j.cjee.201511027 [15] 蒋甜. 短带鞘藻-活性污泥固定化体系及其反应器脱氮除磷效果研究[D]. 湘潭: 湘潭大学, 2017. [16] LI Q, LIANG Z, GE F, et al. Alleviating CTAC and Flu combined pollution damage in Chlorella vulgaris by exogenous nitric oxide[J]. Chemosphere, 2014, 96: 39-45. doi: 10.1016/j.chemosphere.2013.07.012 [17] 苏肖玲. 短带鞘藻-活性污泥共生体系的构建及其脱氮除磷效果评价[D]. 湘潭: 湘潭大学, 2015. [18] 姜婷婷. 乙醇作为生活污水同步硝化反硝化脱氮外碳源可行性研究[J]. 环境科学与管理, 2019, 44(1): 124-127. doi: 10.3969/j.issn.1673-1212.2019.01.025 [19] 张欣瑞, 池玉蕾, 王倩, 等. 低碳源条件下供氧模式对活性污泥系统脱氮性能的影响[J]. 环境科学, 2020, 41(7): 3356-3364. [20] 钟云浩, 何宇哲, 宋朝红, 等. 不同碳源模式下酵母菌PNY2013同步脱氮除磷的应用研究[J]. 环境科学学报, 2020, 40(9): 3211-3223. [21] MAILINH T N, LIN C Y, LAY C H. Microalgae cultivation using biogas and digestate carbon sources[J]. Biomass and Bioenergy, 2019, 122: 426-432. doi: 10.1016/j.biombioe.2019.01.050 [22] LIU N, YANG Y, LI F, et al. Importance of controlling pH-depended dissolved inorganic carbon to prevent algal bloom outbreaks[J]. Bioresource Technology, 2016, 220: 246-252. doi: 10.1016/j.biortech.2016.08.059 [23] 孟顺龙, 陈家长, 徐跑, 等. 氮磷比对两种蓝藻生长及竞争的影响[J]. 农业环境科学学报, 2012, 31(7): 1438-1444. [24] 吴珊, 张晓萍, 张福萍. 2种藻类储磷释磷过程与生长情况对比[J]. 河海大学学报(自然科学版), 2010, 38(1): 15-19. [25] ZHANG M Y, PAN L Q, LIU L P, et al. Phosphorus and nitrogen removal by a novel phosphate-accumulating organism, Arthrobacter sp. HHEP5 capable of heterotrophic nitrification-aerobic denitrification: Safety assessment, removal characterization, mechanism exploration and wastewater treatment[J]. Bioresource Technology, 2020, 312: 123633. doi: 10.1016/j.biortech.2020.123633 [26] SUN L, TIAN Y, ZHANG J, et al. A novel membrane bioreactor inoculated with symbiotic sludge bacteria and algae: Performance and microbial community analysis[J]. Bioresource Technology, 2017, 251: 311-319.