-
池塘养殖是我国最普遍的养殖方式之一,在养殖过程中,为了保证养殖水质环境良好而采取频繁换水。但向外界环境排放大量未处理的养殖尾水,不仅危害水域生态环境,还会对养殖业的健康发展造成一定影响。有效净化养殖尾水,减少污染物排放量,对保证水产养殖业绿色、健康发展具有重要意义。目前,我国水产养殖业正朝着生态养殖和养殖水体污染零排放的方向发展[1]。许多国内外专家学者采用不同的方法对淡水养殖尾水的净化进行了研究。王梦亮等[2]研究发现,光合细菌可明显改善鲤鱼养殖水质,其中与对照组相比,氨氮下降了58.7%,硝态氮下降了29.4%,COD下降了21%。HENDE等[3]研究发现,光合细菌(Photosynthetic bacteria)可以高效地去除养殖尾水中的总氨氮(TAN)、亚硝基(
$ {\rm{NO}}_{\rm{2}}^ - $ -N)、化学需氧量(CODMn)及增加溶氧量(DO),能显著净化养殖水质,有效改善养殖环境。黄雪娇等[4]研究表明,光合细菌对水中氨氮的去除率高达95%,并能有效吸收利用水中的亚硝酸盐、氨和硫化氢等,增加水中溶氧量可净化养殖水体。JEONG等[5]研究表明,固定化光合细菌系统能明显降低养殖尾水中$ {\rm{NO}}_{\rm{2}}^ - $ -N、$ {\rm{NO}}_{\rm{3}}^ - $ -N、TP以及TAN的含量。因此,开发一种健康高效、快速稳定的净化养殖尾水方法,已成为我国目前水产养殖业健康、可持续发展的关键性问题。近几年相关净化养殖尾水的研究表明,利用光合细菌(Photosynthetic bacteria)净化养殖尾水是一种成本低廉、节约能源、简便易行的方法,作为净化水体的有效手段被广泛运用于研究和实践[6-7]。凤眼莲(Eichhornia crassipes)、蕹菜(Ipomoea aquatica)和狐尾藻(Myriophyllum verticillatum)分别代表了3种不同生活类型的水生植物,在净化养殖尾水和生态修复中起到重要作用[8-11]。李文祥等[12]研究表明,蕹菜不仅可以改善养殖水体水质,减少对外界环境的污染,而且能增加养殖收入;而凤眼莲被公认为是去除水体中N、P效果最佳的植物[13]。陈鸿等[14]研究表明,狐尾藻具有较强的适应性和耐污染,而被作为污水处理及生态修复过程中首选的重要植物之一。由于传统研究多从单一物种出发,只是单独的利用有益菌或水生植物来净化养殖尾水,而目前把光合细菌与凤眼莲、蕹菜和狐尾藻(即光合细菌和3种不同生活类型的水生植物)相结合来净化养殖尾水的研究鲜见报道。由于水生植物及其根系可为光合细菌的生长、繁殖提供了良好的生长环境,直接或间接地促进光合细菌对氮、磷吸收和COD的去除[15],进而有利于光合细菌和水生植物更好地联合净化养殖尾水。因此,本研究利用光合细菌分别与3种不同的水生植物(凤眼莲、蕹菜和狐尾藻)组合构建光合细菌+水生植物联合净化体系,比较了光合细菌与不同生活类型的水生植物构建的联合净化体系对淡水养殖尾水中TAN、
$ {\rm{NO}}_{\rm{2}}^ - $ -N$ {\rm{NO}}_{\rm{3}}^ - $ -N、TSS、COD、TN和TP的去除率,分析了不同联合净化体系对养殖尾水的净化效果,筛选出最佳组合,以期为今后设计和构建水产养殖尾水处理系统提供参考。
光合细菌与水生植物联合作用对暗纹东方鲀养殖尾水的净化效果
Purification efficiency of Takifugu obscurus aquaculture tail water by combination of photosynthetic bacteria and aquatic plants
-
摘要: 为达到高效净化淡水养殖尾水,利用实验室水质测定方法,研究了光合细菌(Photosynthetic bacteria)分别与凤眼莲(Eichhornia crassipes)、蕹菜(Ipomoea aquatica)、狐尾藻(Myriophyllum verticillatum) 3种不同生活类型的水生植物联合作用对暗纹东方鲀(Takifugu obscurus)养殖尾水的净化效能,分析了水质指标(TAN、
$ {{\rm{NO}}_{\rm{2}}^ -} $ -N、$ {{\rm{NO}}_{\rm{3}}^ -} $ -N、TSS、COD、TN和TP)的变化及其去除率。结果表明:3种水生植物中蕹菜生长最快,其次为凤眼莲,狐尾藻生长最慢。光合细菌+水生植物联合作用对淡水养殖尾水的净化效果显著,栽种水生植物的组合(PA1、PA2、PA3)对尾水中$ {{\rm{NO}}_{\rm{2}}^ - }$ -N、$ {{\rm{NO}}_{\rm{3}}^ -} $ -N、TSS、TN和TP的去除效果均显著优于未栽种水生植物的光合细菌组(P)和对照组(P<0.05),对TAN、COD的去除率不显著(P>0.05),但均大于对照组;其中栽种蕹菜的组合 (PA2) 去除效果最佳,${ {\rm{NO}}_{\rm{2}}^ - }$ -N、TN、TP和COD值均在6 d内迅速降低,TAN浓度于9 d内降至最低,${ {\rm{NO}}_{\rm{2}}^ - }$ -N和TSS于15 d时降至最低,并均趋于稳定;最终TAN、${ {\rm{NO}}_{\rm{2}}^ -} $ -N、${ {\rm{NO}}_{\rm{3}}^ - }$ -N和TSS的去除率达到了94.34%、99.7%、99.11%、97.23%,TN、TP和COD的去除率达到了87.74%、86.26%和34.07%。各项指标除TSS外均达到了我国农业农村部要求的《淡水养殖尾水排放要求》(SC/T 9101-2018)一级排放标准。根据以上结果,选出的最佳净化组合为光合细菌和蕹菜组合。此结果可为淡水养殖尾水处理系统的设计和构建提供参考。Abstract: In order to achieve the high efficient purification of freshwater aquaculture tail water, the purification efficiency of Takifugu obscurus aquaculture tail water by photosynthetic bacteria combined with one of three different life forms of aquatic plants Eichhornia crassipes, Ipomoea aquatica and Myriophyllum verticillatum was studied through laboratory water quality determination methods, the changes and removal effects of various parameters of water quality (TAN,$ {\rm{NO}}_{\rm{2}}^ - $ -N,$ {\rm{NO}}_{\rm{3}}^ - $ -N, TSS, COD, TN and TP) were analyzed. The results showed that Ipomoea aquatica grew fastest of three aquatic plants, Eichhornia crassipes followed, and Myriophyllum verticillatum grew slowest. The combined systems of photosynthetic bacteria and aquatic plants had a significant purification effect on the freshwater aquaculture tail water, the removal effects of$ {\rm{NO}}_{\rm{2}}^ - $ -N,$ {\rm{NO}}_{\rm{3}}^ - $ -N, TSS, TN and TP in tail water by the combined systems with aquatic plants(PA1, PA2, PA3) were better than those of photosynthetic bacteria group (P) and control group (P<0.05), but the removal effects of TAN and COD were not significant (P>0.05), but they were higher than those of control group. Among them, the removal effect of the combined system with Ipomoea aquatica (PA2) was the best, and the concentrations of$ {\rm{NO}}_{\rm{2}}^ - $ -N, TN, TP and COD decreased rapidly within 6 days, the concentration of TAN decreased to the lowest value within 9 days, and gradually approached to the stable values. The final removal rates of TAN,$ {\rm{NO}}_{\rm{2}}^ - $ -N,$ {\rm{NO}}_{\rm{3}}^ - $ -N and TSS reached 94.34%, 99.7%, 99.11% and 97.23%, respectively, and the removal rates of TN, TP and COD reached 87.74%, 86.26% and 34.07%, respectively. All the indicators, except for TSS, could meet the first-level discharge standards in the Discharge Requirements for Tail Water of Freshwater Aquaculture (SC/T 9101-2018) required by the Ministry of Agriculture and Rural Areas of China. Therefore, the best combination was photosynthetic bacteria and Ipomoea aquatica. The research results can provide a reference for the design and construction of freshwater aquaculture tail water treatment system. -
表 1 实验期间各组植物的相对生长速率和生物量变化
Table 1. Variation of relative growth rates and biomass of plants in different groups during the experiment period
组别 初始生物量/g 结束生物量/g 相对生长速率/
(%·d−1)P — — — PA1 300.56±0.43a 680.97±42.81b 3.90±0.30a PA2 300.87±0.49a 791.73±62.21a 4.61±0.38a PA3 300.95±0.69a 495.07±50.58c 2.37±0.50b 対照组 — — — 注:表中同列中标有不同小写字母表示不同组之间有显著差异(P<0.05), 标有相同小写字母表示不同组之间无显著差异(P>0.05)。 表 2 表2实验结束后各组中总氨氮(TAN)、亚硝态氮(
$ {\bf{NO}}_{\rm{2}}^ - $ -N)和硝态氮($ {\bf{NO}}_{\rm{3}}^ - $ -N)的浓度及其去除率Table 2. At the end of the experiment, the concentration and removal rate of total ammonia nitrogen, nitrite nitrogen and nitrate nitrogen in each group
组别 TAN $ {\rm{NO}}_{\rm{2}}^ - $ -N$ {\rm{NO}}_{\rm{3}}^ - $ -N浓度/(mg·L−1) 去除率/% 浓度/(mg·L−1) 去除率/% 浓度/(mg·L−1) 去除率/% P 0.036±0.005a 89.16±1.483a 0.010±0.002b 98.76±0.203b 2.152±0.019b 34.40±0.564c PA1 0.029±0.020a 91.43±5.870a 0.002±0.0002c 99.74±0.025a 0.807±0.518c 75.39±15.79b PA2 0.019±0.014a 94.34±4.070a 0.002±0.001c 99.78±0.126a 0.029±0.017d 99.11±0.508a PA3 0.045±0.034a 89.57±7.092a 0.003±0.001c 99.60±0.311a 0.052±0.032d 98.40±0.974a 对照组 0.040±0.002a 87.92±0.612a 0.123±0.001a 85.02±0.076c 2.817±0.276a 14.11±8.428d 注:表中同列中标有不同小写字母表示不同组之间有显著差异(P<0.05), 标有相同小写字母表示不同组之间无显著差异(P>0.05)。 表 3 实验结束后各组中化学需氧量(COD)和总固体悬浮物(TSS)的浓度及其去除率
Table 3. At the end of the experiment, the concentration and removal rate of chemical oxygen demand and total solid suspension in each group
组别 COD TSS 浓度/(mg·L−1) 去除率/% 浓度/(mg·L−1) 去除率/% P 5.920±0.231b 35.24±2.524a 99.333±8.003b 91.05±0.721b PA1 6.368±0.692ab 30.34±7.573ab 39.467±0.833c 96.45±0.075a PA2 6.027±0.605ab 34.07±6.617ab 30.800±13.005c 97.23±1.171a PA3 7.008±0.713a 23.33±7.796b 53.333±9.519c 95.20±0.857a 对照组 7.093±0.302a 22.40±3.309b 199.867±37.745a 82.00±3.399c 注:表中同列中标有不同小写字母表示不同组之间有显著差异(P<0.05), 标有相同小写字母表示不同组之间无显著差异(P>0.05)。 表 4 实验结束后各组中总氮和总磷浓度及其去除率
Table 4. At the end of the experiment, the concentration and removal rate of total nitrogen and total phosphorus in each group
组别 TN TP 浓度/(mg·L−1) 去除率/% 浓度/(mg·L−1) 去除率/% P 1.778±0.113b 75.69±1.546b 0.649±0.027b 51.84±1.998b PA1 1.308±0.360bc 82.12±4.92ab 0.250±0.012c 81.46±0.888a PA2 0.897±0.117c 87.74±1.599a 0.185±0.040c 86.26±2.949a PA3 0.944±0.095c 87.09±1.300a 0.233±0.047c 82.71±3.486a 对照组(CG) 5.132±0.421a 29.82±5.762c 0.816±0.093a 39.45±6.890c 注:表中同列中标有不同小写字母表示不同组之间有显著差异(P<0.05), 标有相同小写字母表示不同组之间无显著差异(P>0.05)。 -
[1] 邹万生, 张景来, 刘良国, 等. 有效微生物菌与水生植物联合净化珍珠蚌养殖废水[J]. 环境工程学报, 2012, 6(6): 1773-1778. [2] 王梦亮, 马清瑞, 梁生康. 光合细菌对鲤鱼养殖水体生态系统的影响[J]. 水生生物学报, 2001, 25(1): 98-101. doi: 10.3321/j.issn:1000-3207.2001.01.016 [3] HENDE S V D, BEELEN V, BORE G, et al. Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: From lab reactors to an outdoor raceway pond[J]. Bioresource Technology, 2014, 159: 342-354. doi: 10.1016/j.biortech.2014.02.113 [4] 黄雪娇, 杨冲, 罗雅雪, 等. 光合细菌在水污染治理中的研究进展[J]. 中国生物工程杂志, 2014, 34(11): 119-124. [5] JEONG S K, CHO J S, KONG I S, et al. Purification of aquarium water by PVA gel-immobilized photosynthetic bacteria during goldfish rearing[J]. Biotechnology and Bioprocess Engineering, 2009, 14(2): 238-247. doi: 10.1007/s12257-008-0195-0 [6] MENG F, ZHANG G M, YANG A Q, et al. Bioconversion of wastewater by photosynthetic bacteria: Nitrogen source range, fundamental kinetics of nitrogen removal, and biomass accumulation[J]. Bioresource Technology Reports, 2018, 4: 9-15. doi: 10.1016/j.biteb.2018.08.012 [7] CHEWAPAT S, ANUWAT C, LA-ORSRI S. Optimization of three anoxygenic photosynthetic bacteria as feed to enhance growth, survival, and water quality in fairy shrimp (Streptocephalus sirindhornae) cultivation[J]. Aquaculture, 2021, 534: 7362-7368. [8] NAHLIK A M, MITSCH W J. Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica[J]. Ecological Engineering, 2006, 28: 246-257. doi: 10.1016/j.ecoleng.2006.07.006 [9] 刘旻慧, 闻学政, 张志勇, 等. 生物浮岛与漂浮植物对开放池塘水质净化效果[J]. 水生生物学报, 2017, 41(6): 1318-1326. doi: 10.7541/2017.163 [10] SPITTERS C J T, KRAMER T. Changes in relative growth rate with plant ontogeny in spring wheat genotypes grown as isolated plants[J]. Euphytica, 1985, 3434(3): 833-847. [11] 金树权, 周金波, 包薇红, 等. 5种沉水植物的氮、磷吸收和水质净化能力比较[J]. 环境科学, 2017, 38(1): 156-161. [12] 李文祥, 李为, 林明利, 等. 浮床水蕹菜对养殖水体中营养物的去除效果研究[J]. 环境科学学报, 2011, 31(8): 1670-1675. [13] 郑建初, 盛 婧, 张志勇, 等. 凤眼莲的生态功能及其利用[J]. 江苏农业学报, 2011, 27(2): 426-429. doi: 10.3969/j.issn.1000-4440.2011.02.034 [14] 陈鸿, 黄世洋, 黎庶凯, 等. 绿狐尾藻人工湿地治理水污染模式及其在广西的应用[J]. 亚热带植物科学, 2016, 45(4): 386-390. doi: 10.3969/j.issn.1009-7791.2016.04.018 [15] ROGERS K H, BREEN C M. Decomposition of Potamogeton criapus L. : The effects of drying on the pattern of mass and nutrient loss[J]. Aquattic Botany, 1982, 12: 1-12. doi: 10.1016/0304-3770(82)90002-X [16] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [17] WOLSTENHOLME R, BAYES C D. An evaluation of nutrient removal by the reed bed treatment system at valleyfield, fife, Scotland[C]//Forth River Purification Board. Proceedings of the International Conference on the Use of Constructed Wetlands in Water Pollution Control. UK, 1990: 139-148. [18] 陈双, 王国祥, 许晓光, 等. 水生植物类型及生物量对污水处理厂尾水净化效果的影响[J]. 环境工程学报, 2018, 12(5): 1424-1433. doi: 10.12030/j.cjee.201710013 [19] LIU H, CHE X, ZHANG Y. Performance of sequencing microbead biofilters in a recirculating aquaculture system[J]. Aquacultural Engineering, 2013, 52: 80-86. doi: 10.1016/j.aquaeng.2012.10.002 [20] SACHSE R, PETZOLDT T, BLUMSTOCK M, et al. Extending one-dimensional models for deep lakes to simulate the impact of submerged macrophytes on water quality[J]. Environmental Modelling & Software, 2014, 61: 410-423. [21] 黄永芳, 杨秋艳, 张太平, 等. 水培条件下两种植物根系分泌特征及其与污染物去除的关系[J]. 生态学杂志, 2014, 33(2): 373-379. [22] 常会庆. 水生植物和微生物联合修复富营养化水体试验效果及机理研究[D]. 杭州: 浙江大学, 2006. [23] 吴伟, 瞿建宏, 王小娟, 等. 水生植物一微生物强化系统对日本沼虾养殖水体的生物净化[J]. 生态与农村环境学报, 2011, 27(5): 108-111. doi: 10.3969/j.issn.1673-4831.2011.05.021 [24] 许国晶, 杜兴华, 王春生, 等. 有效微生物菌群与大薸联合净化养殖水体的效果[J]. 江苏农业学报, 2014, 30(4): 764-771. doi: 10.3969/j.issn.1000-4440.2014.04.012 [25] BUTGOON P S, REDDY K R, DEBUSK T A. Performance of subsurface flow wetlands with batch-load and continuous-flow conditions[J]. Water Environment Research, 1995, 67: 855-862. doi: 10.2175/106143095X131790 [26] 于鲁冀, 范鹏宇, 陈涛, 等. 人工湿地生物降固池对悬浮物及总氮的净化效果[J]. 环境工程学报, 2016, 10(8): 4298-4302. doi: 10.12030/j.cjee.201503214 [27] 袁新程, 施永海, 刘永士. 池塘养殖废水自由沉降及其三态氮、总氮和总磷含量变化[J]. 广东海洋大学学报, 2019, 39(4): 56-62. doi: 10.3969/j.issn.1673-9159.2019.04.009 [28] HAMERSLEY M R, BRIAN L H. Control of denitrification in a septagetreating artificial wetland: The dual role of particulate organic carbon[J]. Water Research, 2002, 36(17): 4415-4427. doi: 10.1016/S0043-1354(02)00134-3 [29] 罗勇胜, 李卓佳, 杨莺莺, 等. 光合细菌与芽孢杆菌协同净化养殖水体的研究[J]. 农业环境科学学报, 2006, 25(增刊): 206-210. [30] 王超, 张文明, 王沛芳, 等. 黄花水龙对富营养化水体中氮磷去除效果的研究[J]. 环境科学, 2007, 28(5): 975-981. doi: 10.3321/j.issn:0250-3301.2007.05.008 [31] KORNER S. Nitrifying and denitrifying bacteria in epiphytic communities of submerged macrophytes in a treated sewage channel[J]. Acta Hydrochimica Et Hydrobiologica, 1999, 27(1): 27-31. doi: 10.1002/(SICI)1521-401X(199901)27:1<27::AID-AHEH27>3.0.CO;2-1 [32] CHRISTIANSE N H, ANDERSEN F, JENSEN H S. Phosphate uptake kinetics for four species of submerged freshwater macrophytes measured by a 33P phosphate radioisotope technique[J]. Aquatic Botany, 2016, 128: 58-67. doi: 10.1016/j.aquabot.2015.10.002