-
有机磷酸酯(organophosphate esters,OPEs)阻燃剂是使用最为广泛的有机磷阻燃剂[1],兼有增塑功能和润滑效果[2],广泛应用于工程塑料、聚氨酯泡沫塑料、树脂以及电子设备、家装饰品、纺织品和涂料等产品[3-4]。随着溴系阻燃剂(brominated flame retardants, BFR)主要是多溴二苯醚(polybrominated diphenyl ethers, PBDEs)从2004年开始逐步在全球限制使用,OPEs阻燃剂作为其优秀替代品,在产量和用量上正快速增长[5-6]。2005年欧盟OPEs的用量达8.5万吨,2011年用量为50万吨,2015年约为68万吨[7];而中国OPEs的消费量在2011年达到10万吨,并以每年15%的速率增长[5]。
OPEs阻燃剂是磷酸上的H被3个取代基团取代的产物。根据取代基的不同,OPEs可分为3类:氯代、烷烃类和芳基类OPEs。不同理化性质影响OPEs的环境行为和生物毒性[8]。OPEs属于添加型阻燃剂,对材料的物理机械性能影响较小[9],兼有增塑功能和润滑效果[2],广泛应用于工程塑料、聚氨酯泡沫塑料、树脂以及电子设备、家装饰品、纺织品和涂料等产品[3-4]。OPEs主要以物理添加方式进入到材料中,在产品的生产、使用、处理和回收的过程中,容易通过挥发、溢出或磨损等方式释放到环境介质中[3],具有一定的环境持留性。OPEs已在大气[10-16]、灰尘[16-20]、水体[21-24]、沉积物[25-26]、土壤[26-27]和食物[26, 28]等环境介质中被检出。毒理学研究表明,OPEs具有免疫毒性、内分泌干扰效应、生殖毒性和神经毒性并具有致癌作用[6, 29-31]。
作为一类新兴环境污染物,OPEs可通过皮肤接触、灰尘摄入、呼吸和饮食等途经进入人体,对人类健康造成潜在危害[32]。OPEs在人群中暴露情况及其可能引起的各种不良健康效应受到广泛关注[33]。当前研究主要集中于孕妇人群OPEs暴露对后代生长发育的影响[34-36]。也有研究报道,OPEs暴露与人群甲状腺肿瘤发生有关联[37]。甲状腺激素和甲状腺激素受体分布于全身脏器和细胞,对于调控个体生长发育和维持机体新陈代谢起着重要作用。考虑到OPEs具有内分泌干扰效应,OPEs暴露的甲状腺毒性研究日益受到学术界关注。鉴于当前有关OPEs的研究报道集中于环境赋存、环境行为和生态毒理学[38-39],而对于OPEs的人群暴露及甲状腺毒性的综述报道较少,本文基于国内外最新研究进展,对常见OPEs阻燃剂的人群暴露及其甲状腺毒性分别进行综述。
有机磷酸酯阻燃剂的人群暴露和甲状腺毒性的研究进展
A review of organophosphate esters (OPEs): Human exposure and toxicities in thyroid
-
摘要: 有机磷酸酯(organophosphate esters,OPEs)是使用最为广泛的有机磷阻燃剂,并兼具增塑剂、消泡剂和萃取剂等功能,被广泛用于电子产品、建筑材料和塑料材料等中,导致其在环境介质中普遍存在,对生态系统和人体健康构成巨大威胁。作为一种新型环境污染物,OPEs的人群暴露特征和生物毒性成为环境健康领域的研究热点。本文系统综述了OPEs的人群暴露特征和甲状腺毒性的研究进展,最后对存在的问题和未来研究方向进行了分析和展望。Abstract: Organophosphate esters (OPEs) are the most widely used organophosphorus flame retardant and has the functions of plasticizer, defoamer and extractant, added in electronic products, building materials and plastic materials, etc. The widespread use of OPEs has resulted in their ubiquitous occurrence in environmental media, which pose a threat to both ecosystems and human health. As a type of emerging environmental pollutants, human exposure to OPEs and related toxicity have become a research hotpot in the field of environmental health. In this paper, the research progresses on the population exposure to several kinds of OPEs and its toxicities in thyroid system were summarized. Finally, the gaps in our knowledge of human exposure assessment and thyroid toxicity of OPEs were highlighted and critical directions for future studies were proposed.
-
表 1 主要di-OPEs的国内外人群平均内暴露水平(pg·mL−1)
Table 1. Typical di- OPEs levels among population reported in various studies worldwide(pg·mL−1)
国家或地区
Sample site年份
Time人群
Population年龄
/岁
Year数量a
n样本类型
Type芳基类
Aryl-烷基类
Alkyl-含氯类
Chlorinated-参考文献
ReferenceDPHP DEP DnBP BEHP BBOEP BCEP BCIPP BDCIPP 中国 2018* 电子拆解工人 — 88 尿液 700 — — — — 1770 N.D. 230 Yan等[70] 垃圾回收厂工人 — 30 尿液 110 — — — — 1440 N.D. 220 2018* 成人 17—87 52 尿液 177 — 230 6760 2650 2570 150 291 Hou等[61] 57 全血 92 — 123 4480 328 <LOQ 370 <LOQ 57 血清 14 — <LOQ 3080 <LOQ <LOQ 121 <LOQ 2016—2017* 成人 — 26 尿液 240 — 48 — 110 — — 230 Tao等[71] 2016—2017 孕妇 — 15 尿液 940
1200*— 2900
2200*— 87 — — 270 Bai等[62] 羊水 120
180*— 1300
1200*— <LOQ — — <LOQ 2016—2017 成人和儿童 4—90 180 尿液 32.4 376 8.04 49.1 69.1 1.73 22.8 5.31 Sun等[61] 2016 儿童 0—5 227 尿液 250 — — — 50 670 810 80 Zhang等[72] 2015 成人 306 尿液 400 — — — 100 1000 200 6200 Ding等[67] 2015* 儿童 6—14 411 尿液 280 — 120 — 50 1040 150 50 Chen等[73] 2015* 怀孕妇女 — 23 尿液 1100 — — — — — — 1200 Feng等[74] 2014 成人和儿童 0.4—87 221 尿液 550 — 290 — 65 720 94 91 Lu等[42] 2014—2016 孕妇 28.8±4.3 113 尿液 220 — — — 50 — — 120 Luo等[34] — 儿童 12—15 306 尿液 420 — — — N.D. 1000 180 6170 丁锦建等[75] 美国 2018 成人 33.8±12 213 尿液 1060 348 16.8 13.4 32.6 354 83.8 414 Wang等[76] 2015 母亲 — 28 尿液 1200 — — — — — — 3300 Butt等[77] 子女 2—70个月 33 尿液 2900 — — — — — — 10900 2015 成人 — 76 尿液 890 — — — — N.D. N.D. 690 Jayatilaka等[78] 2010—2011 消防员 — 146 尿液 2900 — — — — 860 240 3400 2013—2014 母亲 — 22 尿液 1900 — — — — — N.D. 2400 Butt等[79] 子女 — 26 尿液 3000 — — — — — N.D. 5600 2013—2014 儿童 15—18个月 21 尿液 3370 — — — — — — 6810 Thomas等[80] 儿童 — 20 尿液 8150 — — — — — — 2700 — 成人 — 13 尿液 1500 3400 400 2500 Pretropoulou等[68] 2011—2012 孕妇 28—36 39 尿液 1900 — — — — — — 1300 Hoffman等[81] 2011 成人 — 16 尿液 440 — 110 — N.D. 630 N.D. 90 Dodson等[82] 2011 成人 23—46 9 尿液 2974 — — — — — — 410 Cooper等[83] 2010—2011 成人 40±12.7 47 尿液 2990 — — — — — — — Preston等[84] 46 尿液 1800 — — — — — — — 42 尿液 2110 — — — — — — — 2009 成人 49* 29 尿液 — — — — — — — 408 Carignan等[85] 2008* 母亲 32.6±4.1 96 尿液 2500 — — — — — 700 1100 Gibson等[86] 儿童 4.8±0.8 90 尿液 3200 — — — — — 900 2600 2002—2007 成年男性 18—54 61 尿液 310 — — — — — — 130 Meeker等[87] 2000—2001 孕妇 26 310 尿液 930 — — — — — N.D. b 280 Castorina等[88] 澳大利亚 2010—2013 成人和儿童 — 72
23尿液 24400
63400—
——
——
—<LOQ
N.D.—
——
—1000
660van den Eede等[65] 波多黎哥 2011—2015 孕妇 18—40 141 尿液 15100 — — — — 1120 260 1150 Ingle等[89] 加拿大 2014 成人 — 12 尿液 N.D.—
1290— N.D. N.D. N.D. N.D. —12330 N.D. —680 N.D. —1170 Su等[69] 2010—2012 孕妇 18—45 24 尿液 2880 — — — 380 <LOQ <LOQ 270 Kosarac等[90] 挪威 2015* 母亲 32—54 244 尿液 630 — N.D. — N.D. — — 80 Cequier等[91] 子女 6—12 112 尿液 1000 — N.D. — N.D. — — 230 2013—2014* 成人 — 55 头发 24000 — <LOQ — — — — <LOQ Xu等[66] — 61 尿液 610 — 99 — <35 — — 68 a 收集样本数,the number of collected samples; b N.D.:未检出,N.D. this chemical was not detected in all samples; c <LOQ:小于定量限,geometric mean or median concentration was lower than the limit of quantification ; — 没有数据,data unavailable;* 暴露水平为中位数,the concentration was shown by median 表 2 主要tri-OPEs的国内外人群平均内暴露水平
Table 2. Typical tri- OPEs levels among population reported in various studies worldwide
国家或
地区
Sample
site年份
Time年龄
/岁
Year数量a
n类型
Type芳基类
Aryl-烷基类
Alkyl-含氯类
Chlorinated-单位
Unit参考文献
ReferenceTPHP TMPP EHDPP TEP TnBP TEHP TBOEP TCEP TCIPP TDCIPP 中国 2019 29—94 232 血浆 N.D. b 0.79 0.72 1.1 N.D. N.D. — — N.D. — µg·L−1 Li等[92] 56 血浆 6.01 N.D. N.D. 0.16 0.88 N.D. — — N.D. — µg·L−1 2018* 17—87 57 全血 0.366 — 1.100 0.432 0.176 <0.145 0.164 <0.194 <0.166 <0.393 ng·mL−1 Hou等[62] 57 血清 <0.307 — 0.933 0.196 0.154 <0.145 0.209 <0.194 1.05 <0.393 ng·mL−1 52 尿液 <0.061 <0.002 <0.016 0.075 <0.006 <0.091 0.038 <0.039 <0.033 <0.079 ng·mL−1 2018 22—88 89 血清 10.2 — — — 10.3 — — 227 1.0 — ng·g−1 lwd Gao等[93] 2015 — 9 血清 <4.2 — — — 3.4—
46.5— — 248.6—958.2 — — ng·g−1 lw Li等[94] 2013* 18—87 99 血液 0.35 — 0.85 0.15 N.D. N.D. 0.05 0.1 0.05 N.D. ng·mL−1 Ya等[95] 2012* 20—50 257 全血 0.43 0.09 1.22 0.49 37.8 0.04 0.54 <0.31 0.71 N.D. ng·mL−1 Zhao等[96] 2005* 18—37 50 胎盘 15.1 — N.D. 10.2 N.D. N.D. 16.7 142 — N.D. ng·g−1lw Ding等[64] 挪威 2012 32—56 48 头发 52 — 27 — 22 12 65 72 — 30 ng·g−1 Kucharska
等[64]6—12 54 头发 63 — 21 — 11 8 318 59 — 美国 2009—
201219—40 100 母乳 0.149 0.021 0.022 0.350 0.539 0.245 1.44 0.036 0.221 — ng·mL−1 Ma等[97] 日本* 2009—
201125—42 20 母乳 1.4 N.D. N.D. N.D. 0.39 — 0.24 0.14 — N.D. ng·g−1 lw Kim等[51] 菲律宾* 2008 17—45 41 母乳 19 2.3 N.D. N.D. 1.5 — N.D. 42 — N.D. ng·g−1 lw 越南* 2008 21—34 26 母乳 4.9 0.28 N.D. N.D. 2.0 — N.D. N.D. — N.D. ng·g−1 lw 瑞典* — — — 母乳 8.5 — 6.5 — 12 — 4.7 4.9 — 4.3 ng·g−1 lw Sundkvist
等 [52]a 收集样本数,the number of collected samples; b N.D.:未检出,N.D. this chemical was not detected in all samples; c <LOQ:小于定量限,geometric mean or median concentration was lower than the limit of quantification ;d lw: lipid weight ;— 没有数据,data unavailable;* 暴露水平为中位数,the concentration was shown by median. 表 3 OPEs毒理学参数
Table 3. Toxicological parameters of OPEs
RfD[41]a RfD[104] a RfD[100] a SFO[100]b GIABS[100]c ABS[102]d TMP — — 0.01 0.02 1 0.1 TnBP 0.0024 0.024 0.01 0.009 1 0.1 TCIPP 0.008 0.008 0.01 — 1 0.1 TCEP 0.0022 0.0022 0.007 0.020 1 0.1 TDCIPP 0.0015 0.0015 0.02 — 1 0.1 TBOEP 0.0015 0.0015 — — — — TDBPP — — — 2.300 1 — TEHP — — 0.1 0.0032 1 0.1 TPHP 0.007 0.007 — — — — TMPP 0.0013 0.0013 0.02 — — — DMMP — — 0.06 0.001 1 0.1 a 为参考剂量(ng·kg−1·d−1bw);b 经口风险斜坡因子[1/(ng·kg−1·d−1bw)];c 胃肠道吸收因子;d 皮肤吸附分数. 表 4 OPEs暴露与甲状腺激素水平的变化
Table 4. OPEs exposure and changes in thyroid hormone levels
出版时间
Time目标化合物
Compound研究对象
Subject研究结果
Result染毒情况
Dose参考文献
Reference2013 TDCPP 斑马鱼 仔鱼T4↓T3↑ 10—600 μg·L−1, 144 h Wang等[107] 2015 TDCPP 斑马鱼 F0代雌鱼T3↓T4↓
F1代T4↓0—100 μg·L−1,6 个月 Wang等[110] 2015 TPHP 斑马鱼 仔鱼T3↑T4↑ 40—500 μg·L−1, 7 d Kim等[108] 2017 TBOEP 斑马鱼 仔鱼T3↑T4↑ 0—2000 μg·L−1, 144 h Liu等[109] 2019 TDCPP, TPP 斑马鱼 T3↓T4↓(雄鱼), T3↑T4↑(雌鱼) 0—1000 μg·L−1, 14 d Liu等[111] 2013 TCIPP 鸡胚 fT4↓ 0—51600 ng·g−1, 22 d Farhat等[112] 2013 TDCIPP 鸡胚 fT4→ 0—45000 ng·g−1, 22 d Farhat等[112] 2014 TEP 鸡胚 fT4↓TT4→ 8—241500 ng·g−1, 22 d Egloff等[113] 2016 TDCIPP 大鼠 T3↑TT4→ fT4→ 50—250 mg·kg−1, 21 d Zhao等[114] 2010 TDCPP 室内灰尘 fT4↓(男性) — Meeker等[120] 2013 TDCIPP、TPHP、BDCIPP、DPHP 男性尿液 TT3↑TSH↑fT4→ — Meeker等[119] 2017 DPHP 人尿液 TT4↑FT4→TT3→TSH→ — Preston等[84] -
[1] 李娜娜, 姜国伟, 周光远, 等. 有机磷类阻燃剂的合成及应用进展 [J]. 应用化学, 2016, 33(6): 611-623. doi: 10.11944/j.issn.1000-0518.2016.06.150299 LI N N, JIANG G W, ZHOU G Y, et al. Synthesis and application progress of organic phosphorus-containing flame retardants [J]. Chinese Journal of Applied Chemistry, 2016, 33(6): 611-623(in Chinese). doi: 10.11944/j.issn.1000-0518.2016.06.150299
[2] 张云刚, 胡玉捷, 马永明, 等. 磷酸酯阻燃剂市场现状分析及展望 [J]. 热固性树脂, 2012, 27(6): 73-77. ZHANG Y G, HU Y J, MA Y M, et al. Market analysis and prospect of phosphate flame retardant [J]. Thermosetting Resin, 2012, 27(6): 73-77(in Chinese).
[3] 王晓伟, 刘景富, 阴永光. 有机磷酸酯阻燃剂污染现状与研究进展 [J]. 化学进展, 2010, 22(10): 1983-1992. WANG X W, LIU J F, YIN Y G. The pollution status and research progress on organophosphate ester flame retardants [J]. Progress in Chemistry, 2010, 22(10): 1983-1992(in Chinese).
[4] van den EEDE N, BALLESTEROS-GÓMEZ A, NEELS H, et al. Does biotransformation of aryl phosphate flame retardants in blood cast a new perspective on their debated biomarkers? [J]. Environmental Science & Technology, 2016, 50(22): 12439-12445. [5] 张文萍, 张振飞, 郭昌胜, 等. 环太湖河流及湖体中有机磷酸酯的污染特征和风险评估 [J]. 环境科学, 2021, 42(4): 1801-1810. ZHANG W P, ZHANG Z F, GUO C S, et al. Pollution characteristics and risk assessment of organophosphate esters in rivers and water body around Taihu Lake [J]. Environmental Science, 2021, 42(4): 1801-1810(in Chinese).
[6] 李素珍, 付卫强, 冯承莲. 有机磷酸酯阻燃剂的环境暴露、环境行为和毒性效应研究进展 [J]. 环境工程, 2018, 36(9): 180-184,35. LI S Z, FU W Q, FENG C L. Research progress in environmenatal exposure, behaviour and toxic effect of organophosphorus flame retardants [J]. Environmental Engineering, 2018, 36(9): 180-184,35(in Chinese).
[7] van der VEEN I, de BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067 [8] 高小中, 许宜平, 王子健. 有机磷酸酯阻燃剂的环境暴露与迁移转化研究进展 [J]. 生态毒理学报, 2015, 10(2): 56-68. GAO X Z, XU Y P, WANG Z J. Progress in environment exposure, transport and transform of organophosphorus flame retardants [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 56-68(in Chinese).
[9] 朱丽君, 陈金芳. 有机磷系阻燃剂文献计量学分析 [J]. 武汉工程大学学报, 2012, 34(7): 75-78. doi: 10.3969/j.issn.1674-2869.2012.07.016 ZHU L J, CHEN J F. Literature metrology analysis of organic phosphorus flame retardant [J]. Journal of Wuhan Institute of Technology, 2012, 34(7): 75-78(in Chinese). doi: 10.3969/j.issn.1674-2869.2012.07.016
[10] CASTRO-JIMÉNEZ J, SEMPÉRÉ R. Atmospheric particle-bound organophosphate ester flame retardants and plasticizers in a North African Mediterranean coastal city (Bizerte, Tunisia) [J]. Science of the Total Environment, 2018, 642: 383-393. doi: 10.1016/j.scitotenv.2018.06.010 [11] PERSSON J, WANG T, HAGBERG J. Organophosphate flame retardants and plasticizers in indoor dust, air and window wipes in newly built low-energy preschools [J]. Science of the Total Environment, 2018, 628/629: 159-168. doi: 10.1016/j.scitotenv.2018.02.053 [12] FROMME H, LAHRZ T, KRAFT M, et al. Organophosphate flame retardants and plasticizers in the air and dust in German daycare centers and human biomonitoring in visiting children (LUPE 3) [J]. Environment International, 2014, 71: 158-163. doi: 10.1016/j.envint.2014.06.016 [13] KIM U J, WANG Y, LI W H, et al. Occurrence of and human exposure to organophosphate flame retardants/plasticizers in indoor air and dust from various microenvironments in the United States [J]. Environment International, 2019, 125: 342-349. doi: 10.1016/j.envint.2019.01.065 [14] YADAV I C, DEVI N L, ZHONG G C, et al. Occurrence and fate of organophosphate ester flame retardants and plasticizers in indoor air and dust of Nepal: Implication for human exposure [J]. Environmental Pollution, 2017, 229: 668-678. doi: 10.1016/j.envpol.2017.06.089 [15] HE C, WANG X Y, THAI P, et al. Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary assessment of human exposure [J]. Environmental Pollution, 2018, 235: 670-679. doi: 10.1016/j.envpol.2017.12.017 [16] ZENG Y, DING N, WANG T, et al. Organophosphate esters (OPEs) in fine particulate matter (PM2.5) in urban, e-waste, and background regions of South China [J]. Journal of Hazardous Materials, 2020, 385: 121583. doi: 10.1016/j.jhazmat.2019.121583 [17] ARAKI A, SAITO I, KANAZAWA A, et al. Phosphorus flame retardants in indoor dust and their relation to asthma and allergies of inhabitants [J]. Indoor Air, 2014, 24(1): 3-15. doi: 10.1111/ina.12054 [18] ZENG X Y, WU Y, LIU Z Y, et al. Occurrence and distribution of organophosphate ester flame retardants in indoor dust and their potential health exposure risk [J]. Environmental Toxicology and Chemistry, 2018, 37(2): 345-352. doi: 10.1002/etc.3996 [19] LI W H, SHI Y L, GAO L H, et al. Occurrence, distribution and risk of organophosphate esters in urban road dust in Beijing, China [J]. Environmental Pollution, 2018, 241: 566-575. doi: 10.1016/j.envpol.2018.05.092 [20] ABAFE O A, MARTINCIGH B S. Concentrations, sources and human exposure implications of organophosphate esters in indoor dust from South Africa [J]. Chemosphere, 2019, 230: 239-247. doi: 10.1016/j.chemosphere.2019.04.175 [21] LIU X P, XIONG L L, LI D K, et al. Monitoring and exposure assessment of organophosphorus flame retardants in source and drinking water, Nanjing, China [J]. Environmental Monitoring and Assessment, 2019, 191(2): 119. doi: 10.1007/s10661-019-7239-0 [22] KIM U J, KANNAN K. Occurrence and distribution of organophosphate flame retardants/plasticizers in surface waters, tap water, and rainwater: Implications for human exposure [J]. Environmental Science & Technology, 2018, 52(10): 5625-5633. [23] SHI Y L, GAO L H, LI W H, et al. Occurrence, distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing, China [J]. Environmental Pollution, 2016, 209: 1-10. doi: 10.1016/j.envpol.2015.11.008 [24] WANG R M, TANG J H, XIE Z Y, et al. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, North China [J]. Environmental Pollution, 2015, 198: 172-178. doi: 10.1016/j.envpol.2014.12.037 [25] WANG Y, KANNAN P, HALDEN R U, et al. A nationwide survey of 31 organophosphate esters in sewage sludge from the United States [J]. Science of the Total Environment, 2019, 655: 446-453. doi: 10.1016/j.scitotenv.2018.11.224 [26] YADAV I C, DEVI N L, LI J, et al. Organophosphate ester flame retardants in Nepalese soil: Spatial distribution, source apportionment and air-soil exchange assessment [J]. Chemosphere, 2018, 190: 114-123. doi: 10.1016/j.chemosphere.2017.09.112 [27] HE J H, LI J F, MA L Y, et al. Large-scale distribution of organophosphate esters (flame retardants and plasticizers) in soil from residential area across China: Implications for current level [J]. Science of the Total Environment, 2019, 697: 133997. doi: 10.1016/j.scitotenv.2019.133997 [28] LI J H, ZHAO L M, LETCHER R J, et al. A review on organophosphate Ester (OPE) flame retardants and plasticizers in foodstuffs: Levels, distribution, human dietary exposure, and future directions [J]. Environment International, 2019, 127: 35-51. doi: 10.1016/j.envint.2019.03.009 [29] 章涛, 张搏, 白雪原, 等. 我国居民有机磷阻燃剂暴露特征的初步研究: 从普通人群到场地人群[C]//第十次全国分析毒理学大会暨第六届分析毒理专业委员会会议论文集. 宜昌, 2018: 56-57. ZHANG T, ZHANG B, BAI XY, et al. A preliminary study on the characteristics of Chinese residents exposed to phosphorus flame retardants: from the General Population to the Site Population [A]. Analytical Toxicology Professional Committee of Chinese Toxicology Society. The 10th National Analytical Toxicology Conference and the 6th Analytical Toxicology Professional Committee Conference Proceedings [C]. Professional Committee of Analytical Toxicology of Chinese Society of Toxicology: Chinese Society of Toxicology, 2018: 56-57. (in Chinese).
[30] YANG J W, ZHAO Y Y, LI M H, et al. A review of a class of emerging contaminants: The classification, distribution, intensity of consumption, synthesis routes, environmental effects and expectation of pollution abatement to organophosphate flame retardants (OPFRs) [J]. International Journal of Molecular Sciences, 2019, 20(12): 2874. doi: 10.3390/ijms20122874 [31] World Health Organization & International Programme on Chemical Safety. (1998). Flame retardants : tris (chloropropyl) phosphate and tris(2-chloroethyl) phosphate. World Health Organization. https://apps.who.int/iris/handle/10665/42148 [32] 丁锦建, 杨方星. 有机磷阻燃剂的环境暴露研究进展 [J]. 中华预防医学杂志, 2017, 51(6): 570-576. doi: 10.3760/cma.j.issn.0253-9624.2017.06.022 [33] 顾杰, 顾爱华, 石利利, 等. 有机磷酸酯环境分布及神经毒性研究进展 [J]. 环境与健康杂志, 2018, 35(3): 277-281. GU J, GU A H, SHI L L, et al. Environmental distribution and neurotoxicity of organic phosphate: A review of recent studies [J]. Journal of Environment and Health, 2018, 35(3): 277-281(in Chinese).
[34] LUO D, LIU W Y, TAO Y, et al. Prenatal exposure to organophosphate flame retardants and the risk of low birth weight: A nested case-control study in China [J]. Environmental Science & Technology, 2020, 54(6): 3375-3385. [35] GRANDJEAN P, LANDRIGAN P. Developmental neurotoxicity of industrial chemicals [J]. The Lancet, 2006, 368(9553): 2167-2178. doi: 10.1016/S0140-6736(06)69665-7 [36] CASTORINA R, BRADMAN A, STAPLETON H M, et al. Current-use flame retardants: Maternal exposure and neurodevelopment in children of the CHAMACOS cohort [J]. Chemosphere, 2017, 189: 574-580. doi: 10.1016/j.chemosphere.2017.09.037 [37] DEZIEL N C, YI H D, STAPLETON H M, et al. A case-control study of exposure to organophosphate flame retardants and risk of thyroid cancer in women [J]. BMC Cancer, 2018, 18(1): 637. doi: 10.1186/s12885-018-4553-9 [38] 季麟, 高宇, 田英. 有机磷阻燃剂生产使用及我国相关环境污染研究现况 [J]. 环境与职业医学, 2017, 34(3): 271-279. JI L, GAO Y, TIAN Y. Review on production, application, and environmental pollution of organophosphate flame retardants in China [J]. Journal of Environmental & Occupational Medicine, 2017, 34(3): 271-279(in Chinese).
[39] 徐怀洲, 王智志, 张圣虎, 等. 有机磷酸酯类阻燃剂毒性效应研究进展 [J]. 生态毒理学报, 2018, 13(3): 19-30. doi: 10.7524/AJE.1673-5897.20170601001 XU H Z, WANG Z Z, ZHANG S H, et al. Research progress on toxicity effects of organophosphate flame retardants [J]. Asian Journal of Ecotoxicology, 2018, 13(3): 19-30(in Chinese). doi: 10.7524/AJE.1673-5897.20170601001
[40] DODSON R E, PEROVICH L J, COVACI A, et al. After the PBDE phase-out: A broad suite of flame retardants in repeat house dust samples from California [J]. Environmental Science & Technology, 2012, 46(24): 13056-13066. [41] van den EEDE N, DIRTU A C, NEELS H, et al. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust [J]. Environment International, 2011, 37(2): 454-461. doi: 10.1016/j.envint.2010.11.010 [42] LU S Y, LI Y X, ZHANG T, et al. Effect of E-waste recycling on urinary metabolites of organophosphate flame retardants and plasticizers and their association with oxidative stress [J]. Environmental Science & Technology, 2017, 51(4): 2427-2437. [43] XU F C, GIOVANOULIS G, van WAES S, et al. Comprehensive study of human external exposure to organophosphate flame retardants via air, dust, and hand wipes: The importance of sampling and assessment strategy [J]. Environmental Science & Technology, 2016, 50(14): 7752-7760. [44] SCHREDER E D, UDING N, la GUARDIA M J. Inhalation a significant exposure route for chlorinated organophosphate flame retardants[J]. Chemosphere, 2016, 150: 499-504. [44] XU F C, GIOVANOULIS G, van WAES S, et al. Comprehensive study of human external exposure to organophosphate flame retardants via air, dust, and hand wipes: The importance of sampling and assessment strategy[J]. Environmental Science & Technology, 2016, 50(14): 7752-7760. [45] POMA G, GLYNN A, MALARVANNAN G, et al. Dietary intake of phosphorus flame retardants (PFRs) using Swedish food market basket estimations [J]. Food and Chemical Toxicology, 2017, 100: 1-7. doi: 10.1016/j.fct.2016.12.011 [46] POMA G, SALES C, BRUYLAND B, et al. Occurrence of organophosphorus flame retardants and plasticizers (PFRs) in Belgian foodstuffs and estimation of the dietary exposure of the adult population [J]. Environmental Science & Technology, 2018, 52(4): 2331-2338. [47] ZHAO L M, JIAN K, SU H J, et al. Organophosphate esters (OPEs) in Chinese foodstuffs: Dietary intake estimation via a market basket method, and suspect screening using high-resolution mass spectrometry [J]. Environment International, 2019, 128: 343-352. doi: 10.1016/j.envint.2019.04.055 [48] ZHANG R J, YU K F, LI A, et al. Occurrence, phase distribution, and bioaccumulation of organophosphate esters (OPEs) in mariculture farms of the Beibu Gulf, China: A health risk assessment through seafood consumption [J]. Environmental Pollution, 2020, 263: 114426. doi: 10.1016/j.envpol.2020.114426 [49] WANG Y, KANNAN K. Concentrations and dietary exposure to organophosphate esters in foodstuffs from Albany, New York, United States [J]. Journal of Agricultural and Food Chemistry, 2018, 66(51): 13525-13532. doi: 10.1021/acs.jafc.8b06114 [50] DING J J, DENG T Q, XU M M, et al. Residuals of organophosphate esters in foodstuffs and implication for human exposure[J]. Environmental Pollution, 2018, 233: 986-991. [50] DING J J, DENG T Q, XU M M, et al. Residuals of organophosphate esters in foodstuffs and implication for human exposure[J]. Environmental Pollution, 2018, 233: 986-991. [51] KIM J W, ISOBE T, MUTO M, et al. Organophosphorus flame retardants (PFRs) in human breast milk from several Asian countries [J]. Chemosphere, 2014, 116: 91-97. doi: 10.1016/j.chemosphere.2014.02.033 [52] SUNDKVIST A M, OLOFSSON U, HAGLUND P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk [J]. Journal of Environmental Monitoring:JEM, 2010, 12(4): 943-951. doi: 10.1039/b921910b [53] ABOU-ELWAFA ABDALLAH M, PAWAR G, HARRAD S. Human dermal absorption of chlorinated organophosphate flame retardants;implications for human exposure [J]. Toxicology and Applied Pharmacology, 2016, 291: 28-37. doi: 10.1016/j.taap.2015.12.004 [54] BELLO A, CARIGNAN C C, XUE Y L, et al. Exposure to organophosphate flame retardants in spray polyurethane foam applicators: Role of dermal exposure [J]. Environment International, 2018, 113: 55-65. doi: 10.1016/j.envint.2018.01.020 [55] FREDERIKSEN M, VORKAMP K, JENSEN N M, et al. Dermal uptake and percutaneous penetration of ten flame retardants in a human skin ex vivo model [J]. Chemosphere, 2016, 162: 308-314. doi: 10.1016/j.chemosphere.2016.07.100 [56] HOFFMAN K, GARANTZIOTIS S, BIRNBAUM L S, et al. Monitoring indoor exposure to organophosphate flame retardants: Hand wipes and house dust [J]. Environmental Health Perspectives, 2015, 123(2): 160-165. doi: 10.1289/ehp.1408669 [57] LIU X T, YU G, CAO Z G, et al. Occurrence of organophosphorus flame retardants on skin wipes: Insight into human exposure from dermal absorption [J]. Environment International, 2017, 98: 113-119. doi: 10.1016/j.envint.2016.10.021 [58] YANG C Q, HARRIS S A, JANTUNEN L M, et al. Are cell phones an indicator of personal exposure to organophosphate flame retardants and plasticizers? [J]. Environment International, 2019, 122: 104-116. doi: 10.1016/j.envint.2018.10.021 [59] MENDELSOHN E, HAGOPIAN A, HOFFMAN K, et al. Nail Polish as a source of exposure to triphenyl phosphate [J]. Environment International, 2016, 86: 45-51. doi: 10.1016/j.envint.2015.10.005 [60] DU J, LI H X, XU S D, et al. A review of organophosphorus flame retardants (OPFRs): Occurrence, bioaccumulation, toxicity, and organism exposure [J]. Environmental Science and Pollution Research International, 2019, 26(22): 22126-22136. doi: 10.1007/s11356-019-05669-y [61] SUN Y, GONG X, LIN W L, et al. Metabolites of organophosphate ester flame retardants in urine from Shanghai, China [J]. Environmental Research, 2018, 164: 507-515. doi: 10.1016/j.envres.2018.03.031 [62] HOU M M, SHI Y L, JIN Q, et al. Organophosphate esters and their metabolites in paired human whole blood, serum, and urine as biomarkers of exposure [J]. Environment International, 2020, 139: 105698. doi: 10.1016/j.envint.2020.105698 [63] BAI X Y, LU S Y, XIE L, et al. A pilot study of metabolites of organophosphorus flame retardants in paired maternal urine and amniotic fluid samples: Potential exposure risks of tributyl phosphate to pregnant women [J]. Environmental Science. Processes & Impacts, 2019, 21(1): 124-132. [64] KUCHARSKA A, CEQUIER E, THOMSEN C, et al. Assessment of human hair as an indicator of exposure to organophosphate flame retardants. Case study on a Norwegian mother-child cohort [J]. Environment International, 2015, 83: 50-57. doi: 10.1016/j.envint.2015.05.015 [65] DING J J, XU Z M, HUANG W, et al. Organophosphate ester flame retardants and plasticizers in human placenta in Eastern China [J]. Science of the Total Environment, 2016, 554/555: 211-217. doi: 10.1016/j.scitotenv.2016.02.171 [66] van den EEDE N, HEFFERNAN A L, AYLWARD L L, et al. Age as a determinant of phosphate flame retardant exposure of the Australian population and identification of novel urinary PFR metabolites [J]. Environment International, 2015, 74: 1-8. doi: 10.1016/j.envint.2014.09.005 [67] XU F C, EULAERS I, ALVES A, et al. Human exposure pathways to organophosphate flame retardants: Associations between human biomonitoring and external exposure [J]. Environment International, 2019, 127: 462-472. doi: 10.1016/j.envint.2019.03.053 [68] DING J J, DENG T Q, YE X Q, et al. Urinary metabolites of organophosphate esters and implications for exposure pathways in adolescents from Eastern China [J]. Science of the Total Environment, 2019, 695: 133894. doi: 10.1016/j.scitotenv.2019.133894 [69] PETROPOULOU S S E, PETREAS M, PARK J S. Analytical methodology using ion-pair liquid chromatography-tandem mass spectrometry for the determination of four di-ester metabolites of organophosphate flame retardants in California human urine [J]. Journal of Chromatography A, 2016, 1434: 70-80. doi: 10.1016/j.chroma.2016.01.020 [70] SU G Y, LETCHER R J, YU H X. Determination of organophosphate diesters in urine samples by a high-sensitivity method based on ultra high pressure liquid chromatography-triple quadrupole-mass spectrometry [J]. Journal of Chromatography A, 2015, 1426: 154-160. doi: 10.1016/j.chroma.2015.11.018 [71] YAN X, ZHENG X B, WANG M H, et al. Urinary metabolites of phosphate flame retardants in workers occupied with e-waste recycling and incineration [J]. Chemosphere, 2018, 200: 569-575. doi: 10.1016/j.chemosphere.2018.02.148 [72] TAO Y, SHANG Y Z, LI J, et al. Exposure to organophosphate flame retardants of hotel room attendants in Wuhan City, China [J]. Environmental Pollution, 2018, 236: 626-633. doi: 10.1016/j.envpol.2018.01.079 [73] ZHANG B, LU S Y, HUANG M Z, et al. Urinary metabolites of organophosphate flame retardants in 0-5-year-old children: Potential exposure risk for inpatients and home-stay infants [J]. Environmental Pollution, 2018, 243: 318-325. doi: 10.1016/j.envpol.2018.08.051 [74] CHEN Y, FANG J Z, REN L, et al. Urinary metabolites of organophosphate esters in children in South China: Concentrations, profiles and estimated daily intake [J]. Environmental Pollution, 2018, 235: 358-364. doi: 10.1016/j.envpol.2017.12.092 [75] FENG L P, OUYANG F X, LIU L P, et al. Levels of urinary metabolites of organophosphate flame retardants, TDCIPP, and TPHP, in pregnant women in Shanghai [J]. Journal of Environmental and Public Health, 2016, 2016: 9416054. [76] 丁锦建. 典型有机磷阻燃剂人体暴露途径与蓄积特征研究[D]. 杭州: 浙江大学, 2016. DING J J. Study on human exposure pathways and accumulation characteristics of typical organophosphate flame retardants[D]. Hangzhou: Zhejiang University, 2016(in Chinese).
[77] WANG Y, LI W H, MARTÍNEZ-MORAL M P, et al. Metabolites of organophosphate esters in urine from the United States: Concentrations, temporal variability, and exposure assessment [J]. Environment International, 2019, 122: 213-221. doi: 10.1016/j.envint.2018.11.007 [78] BUTT C M, HOFFMAN K, CHEN A, et al. Regional comparison of organophosphate flame retardant (PFR) urinary metabolites and tetrabromobenzoic acid (TBBA) in mother-toddler pairs from California and New Jersey [J]. Environment International, 2016, 94: 627-634. doi: 10.1016/j.envint.2016.06.029 [79] JAYATILAKA N K, RESTREPO P, WILLIAMS L, et al. Quantification of three chlorinated dialkyl phosphates, diphenyl phosphate, 2, 3, 4, 5-tetrabromobenzoic acid, and four other organophosphates in human urine by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2017, 409(5): 1323-1332. doi: 10.1007/s00216-016-0061-4 [80] BUTT C M, CONGLETON J, HOFFMAN K, et al. Metabolites of organophosphate flame retardants and 2-ethylhexyl tetrabromobenzoate in urine from paired mothers and toddlers [J]. Environmental Science & Technology, 2014, 48(17): 10432-10438. [81] THOMAS M B, STAPLETON H M, DILLS R L, et al. Demographic and dietary risk factors in relation to urinary metabolites of organophosphate flame retardants in toddlers [J]. Chemosphere, 2017, 185: 918-925. doi: 10.1016/j.chemosphere.2017.07.015 [82] HOFFMAN K, DANIELS J L, STAPLETON H M. Urinary metabolites of organophosphate flame retardants and their variability in pregnant women [J]. Environment International, 2014, 63: 169-172. doi: 10.1016/j.envint.2013.11.013 [83] DODSON R E, van den EEDE N, COVACI A, et al. Urinary biomonitoring of phosphate flame retardants: Levels in California adults and recommendations for future studies [J]. Environmental Science & Technology, 2014, 48(23): 13625-13633. [84] COOPER E M, COVACI A, van NUIJS A L N, et al. Analysis of the flame retardant metabolites bis(1, 3-dichloro-2-propyl) phosphate (BDCPP) and diphenyl phosphate (DPP) in urine using liquid chromatography-tandem mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2011, 401(7): 2123-2132. doi: 10.1007/s00216-011-5294-7 [85] PRESTON E V, MCCLEAN M D, CLAUS HENN B, et al. Associations between urinary diphenyl phosphate and thyroid function [J]. Environment International, 2017, 101: 158-164. doi: 10.1016/j.envint.2017.01.020 [86] CARIGNAN C C, MCCLEAN M D, COOPER E M, et al. Predictors of tris(1, 3-dichloro-2-propyl) phosphate metabolite in the urine of office workers [J]. Environment International, 2013, 55: 56-61. doi: 10.1016/j.envint.2013.02.004 [87] GIBSON E A, STAPLETON H M, CALERO L, et al. Differential exposure to organophosphate flame retardants in mother-child pairs [J]. Chemosphere, 2019, 219: 567-573. doi: 10.1016/j.chemosphere.2018.12.008 [88] MEEKER J D, COOPER E M, STAPLETON H M, et al. Urinary metabolites of organophosphate flame retardants: Temporal variability and correlations with house dust concentrations [J]. Environmental Health Perspectives, 2013, 121(5): 580-585. doi: 10.1289/ehp.1205907 [89] CASTORINA R, BUTT C, STAPLETON H M, et al. Flame retardants and their metabolites in the homes and urine of pregnant women residing in California (the CHAMACOS cohort) [J]. Chemosphere, 2017, 179: 159-166. doi: 10.1016/j.chemosphere.2017.03.076 [90] INGLE M E, WATKINS D, ROSARIO Z, et al. An exploratory analysis of urinary organophosphate ester metabolites and oxidative stress among pregnant women in Puerto Rico [J]. Science of the Total Environment, 2020, 703: 134798. doi: 10.1016/j.scitotenv.2019.134798 [91] KOSARAC I, KUBWABO C, FOSTER W G. Quantitative determination of nine urinary metabolites of organophosphate flame retardants using solid phase extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) [J]. Journal of Chromatography B, 2016, 1014: 24-30. doi: 10.1016/j.jchromb.2016.01.035 [92] CEQUIER E, SAKHI A K, MARCÉ R M, et al. Human exposure pathways to organophosphate triesters—A biomonitoring study of mother-child pairs [J]. Environment International, 2015, 75: 159-165. doi: 10.1016/j.envint.2014.11.009 [93] LI Y, LI D, CHEN J Q, et al. Presence of organophosphate esters in plasma of patients with hypertension in Hubei Province, China [J]. Environmental Science and Pollution Research International, 2020, 27(19): 24059-24069. doi: 10.1007/s11356-020-08563-0 [94] GAO D T, YANG J, BEKELE T G, et al. Organophosphate esters in human serum in Bohai Bay, North China [J]. Environmental Science and Pollution Research International, 2020, 27(3): 2721-2729. doi: 10.1007/s11356-019-07204-5 [95] LI P, LI Q X, MA Y L, et al. Determination of organophosphate esters in human serum using gel permeation chromatograph and solid phase extraction coupled with gas chromatography-mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2015, 43(7): 1033-1039. doi: 10.1016/S1872-2040(15)60840-4 [96] YA M L, YU N Y, ZHANG Y Y, et al. Biomonitoring of organophosphate triesters and diesters in human blood in Jiangsu Province, Eastern China: Occurrences, associations, and suspect screening of novel metabolites [J]. Environment International, 2019, 131: 105056. doi: 10.1016/j.envint.2019.105056 [97] ZHAO F R, WAN Y, ZHAO H Q, et al. Levels of blood organophosphorus flame retardants and association with changes in human sphingolipid homeostasis [J]. Environmental Science & Technology, 2016, 50(16): 8896-8903. [98] MA J, ZHU H K, KANNAN K. Organophosphorus flame retardants and plasticizers in breast milk from the United States [J]. Environmental Science & Technology Letters, 2019, 6(9): 525-531. [99] HU Y J, BAO L J, HUANG C L, et al. A comprehensive risk assessment of human inhalation exposure to atmospheric halogenated flame retardants and organophosphate esters in an urban zone [J]. Environmental Pollution, 2019, 252: 1902-1909. doi: 10.1016/j.envpol.2019.06.010 [100] HOFFMAN K, BUTT C M, WEBSTER T F, et al. Temporal trends in exposure to organophosphate flame retardants in the United States [J]. Environmental Science & Technology Letters, 2017, 4(3): 112-118. [101] USEPA, 2017. Mid Atlantic Risk Assessment, Regional Screening Levels (RSLs) - Generic Tables. [EB/OL] . [2017-05]. http://www.epa.gov/region9/superfund/prg [102] 孙瑜. 室内环境中磷系阻燃剂污染特征及健康风险分析[D]. 哈尔滨: 哈尔滨工业大学, 2018. SUN Y. Pullution characteristics and health risk analysis of organophosphate flame retardants in door environment[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
[103] DING J J, SHEN X L, LIU W P, et al. Occurrence and risk assessment of organophosphate esters in drinking water from Eastern China [J]. Science of the Total Environment, 2015, 538: 959-965. doi: 10.1016/j.scitotenv.2015.08.101 [104] ALI N, ALI L, MEHDI T, et al. Levels and profiles of organochlorines and flame retardants in car and house dust from Kuwait and Pakistan: Implication for human exposure via dust ingestion [J]. Environment International, 2013, 55: 62-70. doi: 10.1016/j.envint.2013.02.001 [105] COELHO S D, SOUSA A C A, ISOBE T, et al. Brominated, chlorinated and phosphate organic contaminants in house dust from Portugal [J]. Science of the Total Environment, 2016, 569/570: 442-449. doi: 10.1016/j.scitotenv.2016.06.137 [106] TAJIMA S, ARAKI A, KAWAI T, et al. Detection and intake assessment of organophosphate flame retardants in house dust in Japanese dwellings [J]. Science of the Total Environment, 2014, 478: 190-199. doi: 10.1016/j.scitotenv.2013.12.121 [107] LI J, ZHANG Z, MA L, et al. Implementation of USEPA RfD and SFO for improved risk assessment of organophosphate esters (organophosphate flame retardants and plasticizers) [J]. Environment International, 2018, 114: 21-26. doi: 10.1016/j.envint.2018.02.027 [108] HOFFMAN K, LORENZO A, BUTT C M, et al. Exposure to flame retardant chemicals and occurrence and severity of papillary thyroid cancer: A case-control study [J]. Environment International, 2017, 107: 235-242. doi: 10.1016/j.envint.2017.06.021 [109] WANG Q W, LIANG K, LIU J F, et al. Exposure of zebrafish embryos/larvae to TDCPP alters concentrations of thyroid hormones and transcriptions of genes involved in the hypothalamic-pituitary-thyroid axis [J]. Aquatic Toxicology, 2013, 126: 207-213. doi: 10.1016/j.aquatox.2012.11.009 [110] KIM S, JUNG J, LEE I, et al. Thyroid disruption by triphenyl phosphate, an organophosphate flame retardant, in zebrafish (Danio rerio) embryos/larvae, and in GH3 and FRTL-5 cell lines [J]. Aquatic Toxicology, 2015, 160: 188-196. doi: 10.1016/j.aquatox.2015.01.016 [111] LIU Y R, WU D, XU Q L, et al. Acute exposure to tris (2-butoxyethyl) phosphate (TBOEP) affects growth and development of embryo-larval zebrafish [J]. Aquatic Toxicology, 2017, 191: 17-24. doi: 10.1016/j.aquatox.2017.07.015 [112] WANG Q W, LAM J C W, MAN Y C, et al. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1, 3-dichloro 2-propyl phosphate (TDCPP) to zebrafish [J]. Aquatic Toxicology, 2015, 158: 108-115. doi: 10.1016/j.aquatox.2014.11.001 [113] LIU X S, CAI Y, WANG Y, et al. Effects of tris(1, 3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate (TPP) on sex-dependent alterations of thyroid hormones in adult zebrafish [J]. Ecotoxicology and Environmental Safety, 2019, 170: 25-32. doi: 10.1016/j.ecoenv.2018.11.058 [114] FARHAT A, CRUMP D, CHIU S, et al. In ovo effects of two organophosphate flame retardants—TCPP and TDCPP—on pipping success, development, mRNA expression, and thyroid hormone levels in chicken embryos [J]. Toxicological Sciences, 2013, 134(1): 92-102. doi: 10.1093/toxsci/kft100 [115] EGLOFF C, CRUMP D, PORTER E, et al. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos [J]. Toxicology and Applied Pharmacology, 2014, 279(3): 303-310. doi: 10.1016/j.taap.2014.06.024 [116] ZHAO F, WANG J, FANG Y J, et al. Effects of tris(1, 3-dichloro-2-propyl)phosphate on pathomorphology and gene/protein expression related to thyroid disruption in rats [J]. Toxicology Research, 2016, 5(3): 921-930. doi: 10.1039/C5TX00374A [117] ZHU Y, SU G Y, YANG D D, et al. Time-dependent inhibitory effects of Tris(1, 3-dichloro-2-propyl) phosphate on growth and transcription of genes involved in the GH/IGF axis, but not the HPT axis, in female zebrafish [J]. Environmental Pollution, 2017, 229: 470-478. doi: 10.1016/j.envpol.2017.06.024 [118] 陆美娅. 雌激素受体ER和甲状腺激素受体TR介导的典型环境内分泌干扰物效应研究[D]. 杭州: 浙江工业大学, 2015. LU M Y. Research on the estrogen/thyroid hormone receptor mediated effects of typical environmental endocrine disruptors[D]. Hangzhou: Zhejiang University of Technology, 2015(in Chinese).
[119] REN X M, CAO L Y, YANG Y, et al. In vitro assessment of thyroid hormone receptor activity of four organophosphate esters [J]. Journal of Environmental Sciences, 2016, 45: 185-190. doi: 10.1016/j.jes.2015.12.021 [120] ZHANG Q, JI C Y, YIN X H, et al. Thyroid hormone-disrupting activity and ecological risk assessment of phosphorus-containing flame retardants by in vitro, in vivo and in silico approaches [J]. Environmental Pollution, 2016, 210: 27-33. doi: 10.1016/j.envpol.2015.11.051 [121] MEEKER J D, COOPER E M, STAPLETON H M, et al. Exploratory analysis of urinary metabolites of phosphorus-containing flame retardants in relation to markers of male reproductive health [J]. Endocrine Disruptors, 2013, 1(1): e26306. doi: 10.4161/endo.26306 [122] MEEKER J D, STAPLETON H M. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters [J]. Environmental Health Perspectives, 2010, 118(3): 318-323. doi: 10.1289/ehp.0901332 [123] SU G Y, LETCHER R J, YU H X, et al. Determination of glucuronide conjugates of hydroxyl triphenyl phosphate (OH-TPHP) metabolites in human urine and its use as a biomarker of TPHP exposure [J]. Chemosphere, 2016, 149: 314-319. doi: 10.1016/j.chemosphere.2016.01.114 [124] BLUM A, BEHL M, BIRNBAUM L, et al. Organophosphate ester flame retardants: Are they a regrettable substitution for polybrominated diphenyl ethers? [J]. Environmental Science & Technology Letters, 2019, 6(11): 638-649.