-
随着工业化和城市化的推进,有机固体废物产量逐年增加[1]。这些固体废物中有机组分含量高,可以通过厌氧发酵生产挥发性脂肪酸(VFA)[2]。但VFA几乎完全溶于水,难以分离和提纯[3]。脂肪酸的水溶性随着碳链的延长而逐渐降低,其中碳链大于6的中链脂肪酸(MCFA)具有较好的疏水性。例如:正丁酸与水互溶,正己酸的溶解度则仅为10.82 g·L−1,正辛酸的溶解度则几乎为0[4]。因此,将VFA加长碳链后,其产物的后续分离纯化将更容易。例如,MCFA可以通过离子交换树脂提取[1]、膜萃取[5-6]等方式进行分离。与VFA相比,MCFA除更易分离外,其附加值也更高。有研究[7]表明,乙酸(工业级)的价格约为3 000元·t−1,而己酸(工业级)的价格高达1.7×104 元·t−1。同时,MCFA还是生物柴油、生物塑料、抗菌剂和香料等的前驱体[8],具有较高的应用价值。综上所述,利用微生物链延长技术将VFA合成为MCFA,已得到越来越多的关注。
目前,已经报道的可将VFA链延长从而合成MCFA的微生物有5种。其中,克氏梭菌Clostridium kluyveri由于pH适应范围较广(pH为5.2~8.0),且具有产孢子、耐高温等特性,故研究最多、应用最广[6]。通常,克氏梭菌利用乙醇、乳酸、氢气作为电子供体,将乙酸、丙酸、丁酸等短链羧酸作为电子受体,通过反向β氧化途径生成MCFA。在反向β氧化途径中,碳链每次仅延长2个碳原子,例如丁酸(C4)是由乙酸(C2)和乙醇链延长而成的,己酸(C6)则是由丁酸(C4)和乙醇链延长而成的[6]。而且,反向β氧化途径是一个循环过程,在这个循环过程中,乙醇被NAD+氧化生成乙酰辅酶A,引起底物水平磷酸化,H+在铁氧化还原蛋白作用下被还原为H2,产生膜内外质子浓度差[9]。
由于生物质厌氧发酵液中含有大量的VFA,因此,微生物链延长产MCFA工艺可以以易降解生物质的厌氧发酵液作为底物。例如,污泥、餐厨垃圾、果蔬垃圾和木质纤维素类有机废物均可以经过厌氧发酵产生富含VFA的厌氧发酵液,然后将此厌氧发酵液投加到链延长工艺系统中合成MCFA[10]。生产出的MCFA可以作为医药生产中的抗菌剂、食品行业中的风味添加剂、家禽饲料和猪饲料中的添加剂、化工生产原料、生物柴油的前驱体等[9,11]。总之,利用有机废物的厌氧发酵液进行微生物链延长,一方面可以实现有机废物的资源化利用,另一方面可以生产高值产品MCFA[9]。这使得以链延长为基础的生物法已经成为MCFA生产的一种新兴方法[4]。
本文以微生物链延长生产MCFA为中心,梳理了有机废物厌氧发酵液作为底物的微生物链延长机理和主要影响因素,总结了单一有机废物厌氧发酵液和混合有机废物厌氧发酵液作为底物的微生物链延长技术研究进展,并提出了今后有机废物厌氧发酵液链延长技术的研究方向,以期为生物质的资源化和微生物链延长技术研究提供参考。
有机废物厌氧发酵液链延长合成中链脂肪酸研究进展
Study progress on chain elongation of anaerobic fermentation liquid from organic wastes for medium-chain fatty acid synthesis
-
摘要: 有机废物产量巨大,具备较高的资源化利用潜力。以有机废物厌氧发酵液为底物,通过链延长工艺生产中链脂肪酸,可有效提升产物的经济价值,因而是一种极具潜力的有机废物资源化方法。梳理了有机废物厌氧发酵液链延长的机理以及影响因素,分析了不同有机废物在厌氧发酵链延长中的作用,并提出了今后研究的方向。学术界已获得的研究结果表明,以混合有机废物作为底物进行厌氧发酵,可以实现氮源和碳源的相互补充,其获得的发酵液中挥发性脂肪酸浓度更高,这对后续的链延长产中链脂肪酸具有良好的促进作用。Abstract: The production of organic wastes is huge, presenting a high potential of resource utilization. The production of medium chain fatty acid (MCFA) by chain elongation process using organic wastes anaerobic fermentation liquid as substrate can effectively enhance the economic value of the products, thus is a highly promising method for resource utilization of organic waste. The mechanisms and influencing factors of chain elongation from organic waste fermentation liquids were combed, the role of different organic waste in anaerobic fermentation and further chain elongation was analyzed, the directions for future research were also proposed. The results of studies that have been obtained in academia showed that mixed organic wastes as substrate of anaerobic fermentation can achieve mutual complementation of nitrogen and carbon source, and the higher volatile fatty acid concentration was achieved in the fermentation liquid, which can promote the subsequent chain elongation and MCFA production.
-
图 1 克氏梭菌作用下羧酸链延长代谢路径[9]
Figure 1. Metabolic pathways of carboxylic acid chain elongation by Clostridium kluyveri
图 2 基于克氏梭菌的有机废物厌氧发酵液链延长的合成代谢和分解代谢路径[11]
Figure 2. Anabolic and catabolic pathways of chain elongation of organic waste anaerobic fermentation liquid with Clostridium kluyveri
表 1 有机废物厌氧发酵液链延长和氧化的主要代谢反应
Table 1. Main metabolic reactions of chain elongation and oxidation of organic waste anaerobic fermentation liquid
编号 路径 反应式 R1a 乙酸→正丁酸 $\text{6ethanol+4}{\text{acetate} }^{\text{-} }\text{→}\text{5}{{n}\text{–butyrate} }^{\text{-} }\text{+}{\text{H} }^{\text{+} }\text{+2}{\text{H} }_{\text{2} }\text{+4}{\text{H} }_{\text{2} }\text{O}$ R1b 正丁酸→正己酸 $\text{6ethanol+5}{{n}\text{–butyrate} }^{\text{-} }\text{→}\text{5}{{n}\text{–caproate} }^{\text{-} }\text{+}{\text{acetate} }^{\text{-} }\text{+}{\text{H} }^{\text{+} }\text{+2}{\text{H} }_{\text{2} }\text{+4}{\text{H} }_{\text{2} }\text{O}$ R2 丙酸→正戊酸 $\text{6ethanol+5}{\text{propionate} }^{\text{-} }\text{→}\text{5}{{n}\text{–valerate} }^{\text{-} }\text{+}{\text{acetate} }^{\text{-} }\text{+}{\text{H} }^{\text{+} }\text{+2}{\text{H} }_{\text{2} }\text{+4}{\text{H} }_{\text{2} }\text{O}$ R3 乙醇氧化 $ \text{ethanol+}{\text{H}}_{\text{2}}\text{O}\text{→}{\text{acetate}}^{\text{-}}\text{+}{\text{H}}^{\text{+}}\text{+2}{\text{H}}_{\text{2}} $ R4 乙酸氧化 $ {\text{acetate}}^{\text{-}}\text{+}{\text{H}}^{\text{+}}\text{+2}{\text{H}}_{\text{2}}\text{O}\text{→}\text{2}{\text{CO}}_{\text{2}}\text{+4}{\text{H}}_{\text{2}} $ R5 丙酸氧化 $ {\text{propionate}}^{\text{-}}\text{+2}{\text{H}}_{\text{2}}\text{O}\text{→}{\text{acetate}}^{\text{-}}\text{+C}{\text{O}}_{\text{2}}\text{+3}{\text{H}}_{\text{2}} $ R6 正丁酸氧化 ${{n}\text{–butyrate} }^{\text{-} }\text{+2}{\text{H} }_{\text{2} }\text{O}\text{→}\text{2}{\text{acetate} }^{\text{-} }\text{+}{\text{H} }^{\text{+} }\text{+2}{\text{H} }_{\text{2} }$ R7 甲烷化 $ {\text{CO}}_{\text{2}}\text{+4}{\text{H}}_{\text{2}}\text{→}{\text{CH}}_{\text{4}}\text{+2}{\text{H}}_{\text{2}}\text{O} $ 表 2 利用开放的链延长系统生产己酸的效果
Table 2. Effectiveness of caproic acid production in open chain elongation system
底物 反应器类型 pH 己酸质量浓度/ (g·L−1) 己酸产率/(g·(L·d)−1) 文献 乙酸、乙醇 序批式反应器 7.0 8.2 0.48 [23] 乙酸、乙醇 序批式反应器 6.75~7.0 4.82 — [16] 剩余污泥水解酸化液、乙醇 序批式反应器 6.75~6.8 5.04 — [11] 办公室碎纸、鸡粪 序批式反应器 — 10 — [28] 餐厨垃圾、乙醇 序批式反应器 7.0 8.1 — [29] 乙酸、乙醇 上流式反应器 6.5~ 7.0 11.1 15.7 [19] 乙酸、乙醇 上流式反应器 5.5~7.0 21.1 — [24] 乙酸、乙醇 上流式反应器 6.5~7.2 12.0 57.4 [30] 活性污泥碱性发酵液、乙醇 上流式反应器 7.1 2.39 — [1] 城市固体废物、乙醇 两相补料间歇式厌氧反应器 6.5~7.0 12.6 26 [7] 玉米啤酒废水 半批式反应器 5.5 — 3.4 [31] -
[1] WU S L, SUN J, CHEN X M, et al. Unveiling the mechanisms of medium-chain fatty acid production from waste activated sludge alkaline fermentation liquor through physiological, thermodynamic and metagenomic investigations[J]. Water Research, 2019, 169: 115218. [2] 王冰. 餐厨垃圾厌氧发酵产中链脂肪酸的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019 [3] 方卉, 赵剑斐, 彭道平, 等. 秸秆混合厌氧发酵研究进展[J]. 四川环境, 2019, 38(3): 187-192. [4] 朱文彬. 有机废物厌氧发酵生物合成己酸研究进展[J]. 环境工程, 2020, 38(1): 128-134. [5] AGLER M T, SPIRITO C M, USACK J G, et al. Chain elongation with reactor microbiomes: Upgrading dilute ethanol to medium-chain carboxylates[J]. Energy & Environmental Science, 2012, 5(8): 8189-8192. [6] ANGENENT L T, RICHTER H, BUCKEL W, et al. Chain elongation with reactor microbiomes: Open-culture biotechnology to produce biochemicals[J]. Environmental Science & Technology, 2016, 50(6): 2796-2810. [7] GROOTSCHOLTEN T I M, STRIK D P B T B, STEINBUSCH K J J, et al. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol[J]. Applied Energy, 2014, 116: 223-229. doi: 10.1016/j.apenergy.2013.11.061 [8] 刘春梅. 两相法厌氧发酵产己酸及其微生物学研究[D]. 无锡: 江南大学, 2018 [9] CAVALCANTE W D A, LEITAO R C, GEHRING T A, et al. Anaerobic fermentation for n-caproic acid production: A review[J]. Process Biochemistry, 2017, 54: 106-119. doi: 10.1016/j.procbio.2016.12.024 [10] 陈哲柯. 基于厌氧发酵的剩余污泥产中链脂肪酸研究[D]. 长沙: 湖南大学, 2018 [11] WANG Q, ZHANG P, BAO S, et al. Chain elongation performances with anaerobic fermentation liquid from sewage sludge with high total solid as electron acceptor[J]. Bioresource Technology, 2020, 306: 123188. doi: 10.1016/j.biortech.2020.123188 [12] WU Q, JIANG Y, CHEN Y, et al. Opportunities and challenges in microbial medium chain fatty acids production from waste biomass[J]. Bioresource Technology, 2021, 340: 125633. doi: 10.1016/j.biortech.2021.125633 [13] WU Q, BAO X, GUO W, et al. Medium chain carboxylic acids production from waste biomass: Current advances and perspectives[J]. Biotechnology Advance, 2019, 37(5): 599-615. doi: 10.1016/j.biotechadv.2019.03.003 [14] LIU Y, LU F, SHAO L, et al. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum[J]. Bioresource Technology, 2016, 218: 1140-1150. doi: 10.1016/j.biortech.2016.07.067 [15] YIN Y, ZHANG Y, KARAKASHEV D B, et al. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources[J]. Bioresource Technology, 2017, 241: 638-644. doi: 10.1016/j.biortech.2017.05.184 [16] BAO S, WANG Q, ZHANG P, et al. Effect of acid/ethanol ratio on medium chain carboxylate production with different VFAs as the electron acceptor: Insight into carbon Balance and microbial community[J]. Energies, 2019, 12(19): 3720. doi: 10.3390/en12193720 [17] 包率. 污泥水解酸化液链延长混合发酵产中链脂肪酸研究[D]. 北京: 北京林业大学, 2019 [18] AGLER M T, SPIRITO C M, USACK J G, et al. Development of a highly specific and productive process for n-caproic acid production: Applying lessons from methanogenic microbiomes[J]. Water Science and Technology, 2014, 69(1): 62-68. doi: 10.2166/wst.2013.549 [19] GROOTSCHOLTEN T I, STEINBUSCH K J, HAMELERS H V, et al. Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production[J]. Bioresource Technology, 2013, 135: 440-445. doi: 10.1016/j.biortech.2012.10.165 [20] GROOTSCHOLTEN T I M, KINSKY D B F, HAMELERS H V M, et al. Promoting chain elongation in mixed culture acidification reactors by addition of ethanol[J]. Biomass and Bioenergy, 2013, 48: 10-16. doi: 10.1016/j.biombioe.2012.11.019 [21] 卓英莲. 污水厂剩余污泥水解酸化产挥发性脂肪酸的试验研究[D]. 广州: 华南理工大学, 2010 [22] WEIMER P J, STEVENSON D M. Isolation, characterization, and quantification of Clostridium kluyveri from the bovine rumen[J]. Applied Microbiology and Biotechnology, 2011, 94(2): 461-466. [23] STEINBUSCH K J J, HAMELERS H V M, PLUGGE C M, et al. Biological formation of caproate and caprylate from acetate: Fuel and chemical production from low grade biomass[J]. Energy& Environmental Science, 2011, 4(1): 216-224. [24] LIU Y, HE P, SHAO L, et al. Significant enhancement by biochar of caproate production via chain elongation[J]. Water Research, 2017, 119: 150-159. doi: 10.1016/j.watres.2017.04.050 [25] VASUDEVAN D, RICHTER H, ANGENENT L T. Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes[J]. Bioresource Technology, 2014, 151: 378-382. doi: 10.1016/j.biortech.2013.09.105 [26] BOLAJI I O, DIONISI D. Acidogenic fermentation of vegetable and salad waste for chemicals production: Effect of pH buffer and retention time[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5933-5943. doi: 10.1016/j.jece.2017.11.001 [27] YU J, HUANG Z, WU P, et al. Performance and microbial characterization of two-stage caproate fermentation from fruit and vegetable waste via anaerobic microbial consortia[J]. Bioresource Technology, 2019, 284: 398-405. doi: 10.1016/j.biortech.2019.03.124 [28] LONKAR S, FU Z, HOLTZAPPLE M. Optimum alcohol concentration for chain elongation in mixed-culture fermentation of cellulosic substrate[J]. Biotechnology and Bioengineering, 2016, 113(12): 2597-2604. doi: 10.1002/bit.26024 [29] REDDY M V, HAYASHI S, CHOI D, et al. Short chain and medium chain fatty acids production using food waste under non-augmented and bio-augmented conditions[J]. Journal of Cleaner Production, 2018, 176: 645-653. doi: 10.1016/j.jclepro.2017.12.166 [30] GROOTSCHOLTEN T I, STEINBUSCH K J, HAMELERS H V, et al. Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter[J]. Bioresource Technology, 2013, 136: 735-738. doi: 10.1016/j.biortech.2013.02.114 [31] GE S, USACK J G, SPIRITO C M, et al. Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction[J]. Environmental Science & Technology, 2015, 49(13): 8012-8021. [32] 石耀威. 厌氧微生物转化木薯酒糟制取中链脂肪酸工艺及机理研究[D]. 北京: 北京化工大学, 2020 [33] KUCEK L A, NGUYEN M, ANGENENT L T. Conversion of L-lactate into n-caproate by a continuously fed reactor microbiome[J]. Water Research, 2016, 93: 163-171. doi: 10.1016/j.watres.2016.02.018 [34] WU Q, GUO W, YOU S, et al. Concentrating lactate-carbon flow on medium chain carboxylic acids production by hydrogen supply[J]. Bioresource Technology, 2019, 291: 121573. [35] SPIRITO C M, RICHTER H, RABAEY K, et al. Chain elongation in anaerobic reactor microbiomes to recover resources from waste[J]. Current Opinion in Biotechnology, 2014, 27: 115-122. doi: 10.1016/j.copbio.2014.01.003 [36] 王园园, 张光明, 张盼月, 等. 污泥厌氧发酵制氢研究进展[J]. 水资源保护, 2016, 32(4): 109-116. doi: 10.3880/j.issn.1004-6933.2016.04.018 [37] 苑荣雪. 以污泥发酵液为底物产中链脂肪酸可行性研究[J]. 环境科学与技术, 2019, 42(11): 141-146. [38] 吴云. 餐厨垃圾厌氧消化影响因素及动力学研究[D]. 重庆: 重庆大学, 2009 [39] CONTRERAS-DAVILA C A, CARRION V J, VONK V R, et al. Consecutive lactate formation and chain elongation to reduce exogenous chemicals input in repeated-batch food waste fermentation[J]. Water Research, 2019, 169: 115215. [40] 吴远远. 基于厌氧产酸发酵的新型果蔬垃圾厌氧处理工艺研究[D]. 北京: 清华大学, 2016. [41] 郑明月, 郑明霞, 王凯军, 等. 温度、pH和负荷对果蔬垃圾厌氧酸化途径的影响[J]. 可再生能源, 2012, 30(4): 75-79. [42] 于佳动. 纤维质农业废弃物微好氧酸化机理及高含固率两相厌氧发酵工艺研究[D]. 北京: 中国农业大学, 2017. [43] WANG S, ZHANG G, ZHANG P, et al. Rumen fluid fermentation for enhancement of hydrolysis and acidification of grass clipping[J]. Journal of Environmental Management, 2018, 220: 142-148. [44] ZHANG C, YANG L, TSAPEKOS P, et al. Immobilization of Clostridium kluyveri on wheat straw to alleviate ammonia inhibition during chain elongation for n-caproate production[J]. Environment International, 2019, 127: 134-141. doi: 10.1016/j.envint.2019.03.032 [45] WEIMER P J, NERDAHL M, BRANDL D J. Production of medium-chain volatile fatty acids by mixed ruminal microorganisms is enhanced by ethanol in co-culture with Clostridium kluyveri[J]. Bioresource Technology, 2015, 175: 97-101. doi: 10.1016/j.biortech.2014.10.054 [46] KENEALY W R, CAO Y, WEIMER P J. Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol[J]. Applied Microbiology Biotechnology, 1995, 44: 507-513. doi: 10.1007/BF00169952 [47] KHOR W C, ANDERSEN S, VERVAEREN H, et al. Electricity-assisted production of caproic acid from grass[J]. Biotechnology for Biofuels, 2017, 10: 180. doi: 10.1186/s13068-017-0863-4 [48] 边道林, 孙磊, 王爽, 等. 多底物共发酵产酸特性研究[J]. 黑龙江农业科学, 2014(9): 28-31. doi: 10.3969/j.issn.1002-2767.2014.09.007 [49] 李月寒. 超声波预处理污泥和厨余共发酵产短链脂肪酸的研究[D]. 苏州: 苏州科技大学, 2016 [50] 郑舍予. 剩余污泥联合餐厨垃圾高温共发酵产酸研究[D]. 上海: 华东理工大学, 2019