三维电催化氧化处理难生化降解有机废水研究进展
Review of three-dimensional electrodes for bio-refractory organic wastewater treatment
-
摘要: 难降解有机废水成分复杂、危害大,易导致癌变、畸变,对人类健康产生重大影响,是需要优先治理的环境问题。在许多情况下,采用传统生物法和物理化学法来处理难生化处理有机废水很难达到理想的处理效果,并且其操作工艺复杂,成本相对较高。三维电催化氧化技术的出现为难降解有机废水的处理提供了一种绿色环保高效的方法。三维电催化氧化体系具有传质传热快、脱除效率高、操作简便、占地面积小等优点,呈现广阔的应用前景。结合相关应用研究文献介绍了三维电极的发展历程、基本特性,相应电解装置的特征,并重点阐述了三维电催化氧化体系对难处理有机废水的降解。分析了目前三维电催化氧化处理难降解有机废水存在的问题,并对其发展趋势及有待深入研究的方向进行了展望。以根据实际需求研发新型颗粒电极和催化剂,优化反应器内部的流场及电场,实现反应过程的进一步强化,提高电解效率并降低能耗,为今后的研究与实际应用提供了新的思路。Abstract: Bio-refractory organic wastewater, which easily causes cancer and mutation, is a serious environmental problem that needs urgent treatment. According to previous experimental results, achieving the desired degradation of the bio-refractory organic wastewater by using traditional biological or physicochemical methods is difficult. In addition, these methods have complex operating processes and high cost. Three-dimensional electrodes used for the treatment of bio-refractory organic wastewater is a new type of environment-protective and efficient electrochemical treatment method. Three-dimensional electrodes have been attracting extensive attention because of their unique properties and advantages, such as high mass transfer rate, high removal efficiency, easy operation, and small footprint. Combined with related application research literature, the development history, the basic characteristics, the corresponding electrolysis device, and the degradation of bio-refractory organic wastewater in the three-dimensional system are introduced. The existing problems of the three-dimensional electrocatalytic oxidation for the treatment of bio-refractory organic wastewater are analyzed, and an expectation for its future development is explained. By developing new particle electrodes and catalysts, the optimization of the flow and electric field inside the reactor to improve the efficiency and strengthen the reaction process further is useful for future research and practical applications.
-
表 1 电化学系统中的阳极,阴极和颗粒电极材料
Table 1. The materials of anode, cathode, particle electrode applied in electrochemical system
类型
Type电极
Electrodes描述
Description来源
SourceAnode Graphite Graphite plate, Electro-oxidation [58] DSA Ti/TiO2-RNTs/Sb-SnO2/PbO2-ND(3 cm×3 cm), Electro-oxidation [59] PbO2 coated titanium, 40 cm2, Electro-oxidation [60] Sb-SnO2 coated titanium, Indirect electro-oxidation [22] BDD BDD film, Direct and indirect electro-oxidation [64] Cathode Graphite Graphite plate (60 mm ×110 mm ×2 mm) [27] ACF/Ti Surface area 764 m2·g−1, Average pore diameter 1.92 mm [74] Metals Cu/Zn Plate (Cu: 62.2%wt.; Zn: 37.8%wt.), 75 cm2 [75] Stainless steel 7 cm ×5 cm, Electrogeneration of H2O2 [76] Particle electrode Activated carbon Columnar, length 6—8 mm, diameter 3 mm, Catalysis [80] Modified kaolin Surface area 20 m2·g−1, Adsorption [83] Zeolite Diameter 0.5—1 cm, Sn and Ti composite oxides, Catalysis [20] Coking powder Surface area 16.1 m2·g−1, diameter 0.85—2.00 mm,
Indirect electro-oxidation[82] 表 2 有机废水应用的概述
Table 2. Reviewed applications of organic wastewater
表 3 三维电催化氧化系统处理有机废水中的应用
Table 3. Application of 3D electrochemical system for treating kinds of organic wastewater
阳极
Anode阴极
Cathode颗粒
Particles污染物
Polluents反应条件
Conditions去除效率/%Re 来源Source 不锈钢 不锈钢 碳凝胶 苯酚 初始浓度250 mg·L−1,电压30 V, 流速0.16 L·min−1,
处理时间20 min, pH为弱酸性或碱性介质98 [94] β-PbO2 不锈钢网 活性炭 对硝基苯酚 初始浓度150 mg·L−1, 电流密度 20 A·m−2, pH 3,
温度(25±0.5)℃, 流速1.0 L·min−1,处理时间30 min100 [25] 不锈钢 活性炭纤维 活性炭 酸性橙7 初始浓度300 mg·L−1, 电压20 V, pH 3,
3.0 g·L−1 Na2SO4, 处理时间180 min100 [76] 不锈钢 不锈钢 含5% MnO2 的 活性炭 亚甲基蓝 初始浓度320 mg·L−1, 电压30 V, 流速0.61 L·min−1,
处理时间30 min, T 为(30±2)℃96 [23] 石墨 不锈钢 碳凝胶 活性艳红 初始浓度800 mg·L−1, 电压20 V, 流速0.4 L·min−1,
处理时间30 min, pH 2.895 [98] 不锈钢 不锈钢 活性炭 硝基苯 初始浓度198.84 mg·L−1, 电压20 V, pH 6,
1.0 g·L−1 Na2SO4, 处理时间90 min90 [103] 石墨 石墨 铁颗粒 油类废水 初始浓度1021 mg·L−1, 电压12 V, pH 6.5,
Airflow rate=1.5 L·min−1,处理时间60 min92.8 [106] Ti/Co/SnO2-Sb2O5 石墨 活性炭 造纸厂废水 初始浓度1357 mg·L−1, 电流密度1670 A·m−2, pH 11,
温度20℃, 流速为1.5 L·min−1, 处理时间60 min,
15 g·L−1 Na2SO486.3 [27] 碳板 不锈钢 活性炭 垃圾渗滤液 初始浓度18400 mg·L−1, 电压(3.25±0.15)V, pH 8.9,
流速1.0 L·min−1,处理时间60 min64 [79] -
[1] 中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2019. Statistics Bureau of the people's Republic of China. China Statistical Yearbook [M]. Beijing: China Statistics Press, 2019(in Chinese).
[2] 中共中央国务院. 《水污染防治行动计划》[EB/OL]. [2015-04-16]. http://www.gov.cn/xinwen/2015-04/16/content_2847709.htm. The State Council of the CPC Central Committee. "Water Pollution Prevention Action Plan. " [EB/OL]. [2015-04-16]. http://www.gov.cn/xinwen/2015-04/16/content_2847709.htm(in Chinese).
[3] 中共中央国务院. 《中共中央国务院关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》[EB/OL]. [2018-06-25]. http://www.gov.cn/zhengce/2018-06/25/content_5300978.htm(in Chinese). State Council of the Communist Party of China. "Opinions of the State Council of the Central Committee of the Communist Party of China on Comprehensively Strengthening Ecological Environmental Protection and Fighting the Pollution Prevention and Control"[EB/OL]. [2018-06-25]. http://www.gov.cn/zhengce/2018-06/25/content_5300978.htm(in Chinese).
[4] 李蕾, 李彦澄, 刘邓平, 等. 基于甲烷氧化菌的难降解有机物生物降解研究进展 [J]. 环境化学, 2020, 39(2): 467-474. doi: 10.7524/j.issn.0254-6108.2019081002 LI L, LI Y C, LIU D P, et al. Advancement overviews on methanotrph-based biodegradation of refractory organics [J]. Environmental Chemistry, 2020, 39(2): 467-474(in Chinese). doi: 10.7524/j.issn.0254-6108.2019081002
[5] 庄微. 处理工业有机废水新技术研究进展 [J]. 当代化工, 2019, 48(12): 2944-2947. ZHUANG W. Research progress of new technologies for industrial organic wastewater treatment [J]. Contemporary Chemical Industry, 2019, 48(12): 2944-2947(in Chinese).
[6] OUYANG J,LI C,ZHANG G,et al. Activated sludge and other aerobic suspended culture processes [J]. Water Environment Research, 2019, 91(10): 992-1059. doi: 10.2175/106143013X13698672321869 [7] KIM E S,HA J H,CHOI J. Biological fixed-film systems [J]. Water Environment Research, 2021, 70(4): 491-518. doi: 10.2175/106143098X134226 [8] 宋卫锋, 倪亚明, 何德文. 电解法水处理技术的研究进展 [J]. 化工环保, 2001, 21(1): 11-15. doi: 10.3969/j.issn.1006-1878.2001.01.003 SONG W F, Ni Y M, HE D W. Progress in wastewater treatment by electrolytic technology [J]. Environmental Protection of Chemical Industry, 2001, 21(1): 11-15(in Chinese). doi: 10.3969/j.issn.1006-1878.2001.01.003
[9] 冯玉杰, 李晓岩. 电化学技术在环境工程中的应用[M]. 北京: 化学工业出版社, 2002. FENG Y J, LI X Y. Application of Electrochemical Technology in Environmental Engineering[M]. Beijing: Chemical Industry Press, 2002(in Chinese).
[10] PAIDAR M, BOUZEK K, BERGMANN H. Influence of cell construction on the electrochemical reduction of nitrate [J]. Chemical Engineering Journal, 2002, 85(2/3): 99-109. [11] BACKHURST J R, COULSON J M, GOODRIDGE F, et al. A preliminary investigation of fluidized bed electrodes [J]. Journal of the Electrochemical Society, 1969, 116(11): 1600-1607. doi: 10.1149/1.2411628 [12] 张忠林, 郝晓刚, 于秋硕, 等. 流化床电化学反应器研究进展 [J]. 现代化工, 2007, 27(1): 18-22. doi: 10.3321/j.issn:0253-4320.2007.01.005 ZHANG Z L, HAO X G, YU Q S, et al. Research progress in fluidized bed electrochemical reactor [J]. Modern Chemical Industry, 2007, 27(1): 18-22(in Chinese). doi: 10.3321/j.issn:0253-4320.2007.01.005
[13] XIONG Y, HE C, KARLSSON H T, et al. Performance of three phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater containing phenol [J]. Chemosphere, 2003, 50: 131-136. doi: 10.1016/S0045-6535(02)00609-4 [14] MASTERSON I F, EVANS J W. Fluidized bed electrowinning of copper: experiments using 150 ampere and 1,000 ampere cells and some mathematical modeling [J]. Metallurgical Transactions B, 1982, 13(1): 3-13. doi: 10.1007/BF02666950 [15] ROESSLER A, CRETTENAND D, DOSSENBACH O, et al. Electrochemical reduction of indigo in fixed and fluidized beds of graphite granules [J]. Journal of Applied Electrochemistry, 2003, 33(10): 901-908. doi: 10.1023/A:1025876114390 [16] FLEISCHMANN M, OLDFIELD J W. Fluidised bed electrodes: Part Ⅰ. Polarisation predicted by simplified models [J]. Journal of Electroanalytical Chemistry, 1971, 29(2): 211-230. doi: 10.1016/S0022-0728(71)80084-0 [17] SABACKY B J, EVANS J W. The electrical conductivity of fluidized bed electrodes-its significance and some experimental measurements [J]. Metallurgical Transactions B, 1977, 8(1): 5-13. doi: 10.1007/BF02656345 [18] KREYSA G. Particle phase conductivity of a fluidized bed electrode [J]. Electrochimica Acta, 1980, 25(6): 813-818. doi: 10.1016/0013-4686(80)90032-8 [19] EHDAIE S, FLEISCHMANN M, JANSSON R E W. Application of the trickle tower to problems of pollution control. I. The scavenging of metal ions [J]. Journal of Applied Electrochemistry, 1982, 12(1): 59-67. doi: 10.1007/BF01112065 [20] EL-GHAOUI E A, JANSSON R E W, MORELAND C. Application of the trickle tower to problems of pollution-control. Ⅱ. The direct and indirect oxidation of cyanide [J]. Journal of Applied Electrochemistry, 1982, 12(1): 69-73. doi: 10.1007/BF01112066 [21] YU J C ,BAIZER M M,NOBE K. Mathematical modeling of the paired electro-organic syntheses in packed bed flow reactors [J]. Journal of the Electrochemical Society, 1988, 135(6): 1392-1400. doi: 10.1149/1.2096002 [22] FOCKEDEY E, LIERDE A V. Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes [J]. Water Research, 2002, 36(16): 4169-4175. doi: 10.1016/S0043-1354(02)00103-3 [23] AN T C, ZHU X H, XIONG Y. Feasibility study of photoelectrochemical degradation of methylene blue with three-dimensional electrode-photocatalytic reactor [J]. Chemosphere, 2002, 46(6): 897-903. doi: 10.1016/S0045-6535(01)00157-6 [24] MEI R Q, ZHU W, ZHU C W, et al. 3D macroporous boron-doped diamond electrode with interconnected liquid flow channels: A high-efficiency electrochemical degradation of RB-19 dye wastewater under low current [J]. Applied Catalysis B:Environmental, 2019, 245: 420-427. doi: 10.1016/j.apcatb.2018.12.074 [25] ZHOU M H, LEI L C. The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor [J]. Chemosphere, 2006, 65(7): 1197-1203. doi: 10.1016/j.chemosphere.2006.03.054 [26] WEI L Y, GUO S H, YAN G X et al. Electrochemical pretreatment of heavy oil refinery wastewater using a three-dimensional electrode reactor [J]. Electrochimica Acta, 2010, 55(28): 8615-8620. doi: 10.1016/j.electacta.2010.08.011 [27] WANG B, KONG W P, MA H Z. Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode [J]. Journal of Hazardous Materials, 2007, 146(1/2): 295-301. [28] ZHANG T T, LIU Y J, YANG L, et al. Ti–Sn–Ce/bamboo biochar particle electrodes for enhanced electrocatalytic treatment of coking wastewater in a three-dimensional electrochemical reaction system [J]. Journal of Cleaner Production, 2020, 258: 120273. doi: 10.1016/j.jclepro.2020.120273 [29] CHENG J X, YANG H T, FAN C L, et al. Review on the applications and development of fluidized bed electrodes [J]. Journal of Solid State Electrochemistry, 2020, 24(10): 2199-2217. doi: 10.1007/s10008-020-04786-w [30] TAMIRISA P A, TENG F S, LIDDELL K C, et al. Fluidized bed electropolymerization of thin films: Modeling and experimentation [J]. Journal of the Electrochemical Society, 2003, 150(6): 117-122. doi: 10.1149/1.1567268 [31] KAZDOBIN K, SHVAB N, TSAPAKH S. Scaling up of fluidized-bed electrochemical reactors [J]. Chemical Engineering Journal, 2000, 79(3): 203-209. doi: 10.1016/S1385-8947(00)00211-4 [32] PARK H I, KIM D K, CHOI Y J, et al. Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor [J]. Process Biochemistry, 2005, 40(10): 3383-3388. doi: 10.1016/j.procbio.2005.03.017 [33] L. I. 安特罗波夫. 吴仲达, 朱耀斌, 等译. 理论电化学[M]. 北京: 高等教育出版社. 1982. ANTROPOV L I. WU Z D, ZHU Y B, et al translation. Theoretical electrochemistry[M]. Beijing: Higher Education Press. 1982(in Chinese).
[34] RAJESHWAR K, IBANEZ J G, SWAIN G M. Electrochemistry and the environment [J]. Journal of Applied Electrochemistry, 1994, 24(11): 1077-1091. [35] 韩卫清. 电化学氧化法处理生物难降解有机化工废水的研究[D]. 南京: 南京理工大学, 2007. HAN W Q. The study on the treatment of bio-refractory organic chemical industrial organic wastewater by an electrochemical oxidation method[D]. Nanjing: Nanjing University of Science and Technology, 2007(in Chinese).
[36] MIAO F, LIU Y F, GAO M M, et al. Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode [J]. Journal of Hazardous Materials, 2020, 399: 123023. [37] COMNINELLIS C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment [J]. Electrochimica Acta, 1994, 39(11/12): 1857-1862. [38] SIMOND O, SCHALLER V, COMNINELLIS C. Theoretical model for the anodic oxidation of organics on metal oxide electrodes [J]. Electrochimica Acta, 1997, 42(13/14): 2009-2012. [39] 尤翔宇. 三维电极法处理EDTA废水的基础研究[D]. 长沙: 中南大学, 2013. YOU X Y. Fundamental research on the treatment of EDTA wastewater using three-dimensional electrode method[D]. Changsha: Central South University, 2013(in Chinese).
[40] GOODRIDGE F. Some recent developments of monopolar and bipolar fluidized bed electrodes [J]. Electrochimica Acta, 1977, 22(9): 929-933. doi: 10.1016/0013-4686(77)85005-6 [41] KREYSA G, JUTTNER K, BISANG J M. Cylindrical 3-dimensional electrodes under limiting current conditions [J]. Journal of Applied Electrochemistry, 1993, 23(7): 707-714. [42] LEE J K, SHEMILT L W, CHUN H S. Studies of bipolarity in fluidized bed electrodes [J]. Journal of Applied Electrochemistry, 1989, 19(1): 877-881. [43] DAIZO K, LEVENSPIEL O. Fluidization Engineering[M]2nd ed. Butterworth- Heinemann, Boston, 1991. [44] SABACKY B J, EVANS J W. Electrodeposition of metals in fluidized bed electrodes: Part Ӏ. mathematical model [J]. Journal of the Electrochemical Society, 1979, 126(7): 1176-1180. doi: 10.1149/1.2129238 [45] GOODRIDGE F, VANCE C J. Copper deposition in a pilot-plant-scale fluidized bed cell [J]. Electrochimica Acta, 1979, 24(12): 1237-1242. doi: 10.1016/0013-4686(79)87078-4 [46] SABACKY B J, EVANS J W. Electrodeposition of metals in fluidized bed electrodes: Part Ⅱ. an experimental investigation of copper electrodeposition at high current density [J]. Journal of the Electrochemical Society, 1979, 126(7): 1180-1187. doi: 10.1149/1.2129239 [47] HUTIN D, COEURET F. Experimental study of copper deposition in a fluidized bed electrode [J]. Journal of Applied Electrochemistry, 1977, 7(6): 463-471. doi: 10.1007/BF00616757 [48] FLEISCHMANN M, OLDFIELD J W, TENNAKOON L. Fluidized bed electrodes Part Ⅳ. Electrodeposition of copper in a fluidized bed of copper-coated spheres [J]. Journal of Applied Electrochemistry, 1971, 1(2): 103-112. doi: 10.1007/BF01111857 [49] GOODRIDGE F, VANCE C J. The electrowinning of zinc using a circulating bed electrode [J]. Electrochimica Acta, 1977, 22(10): 1073-1076. doi: 10.1016/0013-4686(77)80041-8 [50] HUH T, EVANS J W, CAREY C D. The fluidized bed electrowinning of silver [J]. Metallurgical Transactions B, 1983, 14(3): 353-357. doi: 10.1007/BF02654353 [51] SHERWOOD W G, QUENEAU P B, NIKOLIC C, et al. Fluid bed electrolysis of nickel [J]. Metallurgical Transactions B, 1979, 10(4): 659-666. doi: 10.1007/BF02662568 [52] DUBROVSKY M, EVANS J W. An investigation of fluidized bed electrowinning of cobalt using 50 and 1000 amp cells [J]. Metallurgical Transactions B, 1982, 13(3): 293-301. doi: 10.1007/BF02667744 [53] 汪群慧, 张海霞, 马军,等. 三维电极处理生物难降解有机废水 [J]. 现代化工, 2004, 24(10): 56-59. doi: 10.3321/j.issn:0253-4320.2004.10.016 WANG Q H, ZHANG H X, MA J,et al. Development of three-dimensional electrode in refractory organic wastewater treatment [J]. Modern Chemical Industry, 2004, 24(10): 56-59(in Chinese). doi: 10.3321/j.issn:0253-4320.2004.10.016
[54] SHIRVANIAN P A, CALO J M. Copper recovery in a spouted vessel electrolytic reactor (SBER) [J]. Journal of Applied Electrochemistry, 2005, 35(1): 101-111. doi: 10.1007/s10800-004-4062-1 [55] KREYSA G, PIONTECK S, HEITZ E. Comparative investigations of packed and fluidized bed electrodes with non-conducting and conducting particles [J]. Journal of Applied Electrochemistry, 1975, 5(4): 305-312. doi: 10.1007/BF00608794 [56] ZHU X P, NI J R, LAI P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes [J]. Water Research, 2009, 43(17): 4347-4355. doi: 10.1016/j.watres.2009.06.030 [57] BAGASTYO A Y, RADJENOVIC J, MU Y, et al. Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes [J]. Water Research, 2011, 45(16): 4951-4959. doi: 10.1016/j.watres.2011.06.039 [58] WENG C H, HSU M C. Regeneration of granular activated carbon by an electrochemical process [J]. Separation and Purification Technology, 2008, 64(2): 227-236. doi: 10.1016/j.seppur.2008.10.006 [59] LIU Y J, SUN T, SU Q, et al. Highly efficient and mild electrochemical degradation of bentazon by nano-diamond doped PbO2 anode with reduced Ti nanotube as the interlayer [J]. Journal of Colloid and Interface Science, 2020, 575: 254-264. doi: 10.1016/j.jcis.2020.04.092 [60] CHIANG L C, CHANG J E, TSENG S C. Electrochemical oxidation pretreatment of refractory organic pollutants [J]. Water Science and Technology, 1997, 36(2/3): 123-130. [61] LIU L, HE H H, ZHANG C, et al. Treatment of reverse osmosis concentrates using a three-dimensional electrode reactor [J]. Current Organic Chemistry, 2012, 16(18): 2091-2096. doi: 10.2174/138527212803532422 [62] MALPASS G R P, MIWA D W, MORTARI D A, et al. Decolorisation of real textile waste using electrochemical techniques: effect of the chloride concentration [J]. Water Research, 2007, 41(13): 2969-2977. doi: 10.1016/j.watres.2007.02.054 [63] 刘文武, 涂学炎, 王伟, 等. 两种DSA电极的制备及其对有机废水降解的电催化性能 [J]. 环境化学, 2007, 26(2): 152-156. doi: 10.3321/j.issn:0254-6108.2007.02.007 LIU W W, TU X Y, WANG W, et al. Preparation and evaluation on the electrocatalytic characteristics of two kinds of DSA electrodes [J]. Environmental Chemistry, 2007, 26(2): 152-156(in Chinese). doi: 10.3321/j.issn:0254-6108.2007.02.007
[64] YU H B, MA C J, QUAN X, et al. Flow injection analysis of chemical oxygen demand (COD) by using a boron-doped diamond (BDD) electrode [J]. Environmental Science & Technology, 2009, 43(6): 1935-1939. [65] MA X L, WANG R P, GUO W Q, et al. Electrochemical removal of ammonia in coking wastewater using Ti/SnO2+Sb/PbO2 anode [J]. International Journal of Electrochemical Science, 2012, 7(7): 6012-6024. [66] GU Q Y, ZHENG J. Study on the electrochemical oxidation treatment of coking wastewater by DSA anode[C]//. Asia-Pacific Energy Equipment Engineering Research Conference, 2015. [67] 朱连亮, 王玉民, 邵长林, 等. 长寿命Ti/TiO2/SbO2-SnO2/SnO2-Sb-CeO2制备及电催化废水性能 [J]. 环境化学, 2014, 33(6): 992-998. doi: 10.7524/j.issn.0254-6108.2014.06.007 ZHU L L, WANG Y M, SHAO C L, et al. Fabrication of long-life Ti/TiO2/SbO2-SnO2/SnO2-Sb-CeO2 electrodes and application in electrochemical wastewater treatment [J]. Environmental Chemistry, 2014, 33(6): 992-998(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.06.007
[68] 吴根英, 许双姐, 王君翔, 等. FR-CNTs-PbO2/SnO2-Sb/Ti电极性能及电催化降解罗丹明B [J]. 环境化学, 2013, 32(3): 358-365. WU G Y, XU S J, WANG J X, et al. Study on the properties of FR-CNTs-PbO2/SnO2-Sb/Ti electrode and its application in electro-catalytic degradation of Rhodamine B [J]. Environmental Chemistry, 2013, 32(3): 358-365(in Chinese).
[69] 段平洲, 黄鸽黎, 胡翔. SnO2-Sb/碳纳米管复合电极的制备及催化降解低浓度头孢他啶 [J]. 环境化学, 2019, 38(5): 991-998. DUAN P Z, HUANG G L, HU X. Fabrication of SnO2-Sb/MWCNTs composite electrode and the anodic degradation of low concentration ceftazidime [J]. Environmental Chemistry, 2019, 38(5): 991-998(in Chinese).
[70] ZHU X P, NI J R, XING X, et al. Synergies between electrochemical oxidation and activated carbon adsorption in three-dimensional boron-doped diamond anode system [J]. Electrochimica Acta, 2011, 56(3): 1270-1274. doi: 10.1016/j.electacta.2010.10.073 [71] KLIDI N, CLEMATIS D, DELUCCHI M, et al. Applicability of electrochemical methods to paper mill wastewater for reuse. Anodic oxidation with BDD and TiRuSnO2 anodes [J]. Journal of Electroanalytical Chemistry, 2018, 815: 16-23. doi: 10.1016/j.jelechem.2018.02.063 [72] COMNINELLIS C, KAPALKA A, MALATO S, et al. Advanced oxidation processes for water treatment: advances and trends for R&D [J]. Journal of Chemical Technology and Biotechnology, 2008, 83(6): 769-776. doi: 10.1002/jctb.1873 [73] CAI J J, ZHOU M H, XU X, et al. Stable boron and cobalt co-doped TiO2 nanotubes anode for efficient degradation of organic pollutants [J]. Journal of Hazardous Materials, 2020: 122723. [74] ZHAO H Z, SUN Y, XU L N, et al. Removal of Acid Orange 7 in simulated wastewater using a three-dimensional electrode reactor: Removal mechanisms and dye degradation pathway [J]. Chemosphere, 2010, 78(1): 46-51. doi: 10.1016/j.chemosphere.2009.10.034 [75] LEI X H , LI M, ZHANG Z Y, et al. Electrochemical regeneration of zeolites and the removal of ammonia [J]. Journal of Hazardous Materials, 2009, 169(1/3): 746-750. [76] XU L N, ZHAO H Z, SHI S Y, et al. Electrolytic treatment of C. I. Acid Orange 7 in aqueous solution using a three-dimensional electrode reactor [J]. Dyes and Pigments, 2008, 77(1): 158-164. doi: 10.1016/j.dyepig.2007.04.004 [77] 申哲民. 电催化氧化法处理有机废水及提高其能效的研究[D]. 北京: 中国科学院生态环境研究中心, 2002. SHEN Z M. Research on electrocatalytic oxidation treatment of organic wastewater and improvement of its energy efficiency[D]. Beijing:Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2002(in Chinese).
[78] 张显峰, 赵朝成, 王德军, 等. 基于SnO2/Fe3O4粒子电极的三维电极体系的电催化性能 [J]. 材料导报, 2017, 31(8): 25-30. doi: 10.11896/j.issn.1005-023X.2017.08.006 ZHANG X F, ZHAO C C, WANG D J, et al. Electrocatalytic performance of three-dimensional electrode system with SnO2/Fe3O4 particle electrode [J]. Materials Review, 2017, 31(8): 25-30(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.08.006
[79] NAGESWARA R N, ROHIT M, NITIN G, et al. Kinetics of electrooxidation of landfill leachate in a three-dimensional carbon bed electrochemical reactor [J]. Chemosphere, 2009, 76(9): 1206-1212. doi: 10.1016/j.chemosphere.2009.06.009 [80] 牟桂芹, 马传军, 周志国, 等. 固定床三维电极反应器深度处理炼油废水 [J]. 化工环保, 2014, 34(1): 41-44. doi: 10.3969/j.issn.1006-1878.2014.01.010 MU G Q, MA C J, ZHOU Z G, et al. Advanced treatment of petroleum refinery wastewater by fixed bed reactor with three-dimensional electrodes [J]. Environmental Protection of Chemical Industry, 2014, 34(1): 41-44(in Chinese). doi: 10.3969/j.issn.1006-1878.2014.01.010
[81] JIA Y N, JIANG W F, HAO S J, et al. Feasibility study on coking waste water treatment by three-dimensional electrode [J]. Advanced Materials Research, 2013, 750/751/752(1502): 1437-1440. [82] ZHANG C H, LIN H, CHEN J, et al. Advanced treatment of biologically pretreated coking wastewater by a bipolar three-dimensional electrode reactor [J]. Environmental Technology, 2013, 34(16): 2371-2376. doi: 10.1080/09593330.2013.770559 [83] KONG W P, WANG B, MA H Z, et al. Electrochemical treatment of anionic surfactants in synthetic wastewater with three dimensional electrodes [J]. Journal of Hazardous Materials, 2006, 137(3): 1532-1537. doi: 10.1016/j.jhazmat.2006.04.037 [84] RADJENOVIC J, ESCHER B I, RABAEY K. Electrochemical degradation of the beta-blocker metoprolol by Ti/Ru0.7Ir0.3O2 and Ti/SnO2-Sb electrodes [J]. Water Research, 2011, 45(10): 3205-3214. doi: 10.1016/j.watres.2011.03.040 [85] SHARIFIAN H, KIRK D W. Electrochemical oxidation of phenol [J]. Journal of the Electrochemical Society, 1986, 133(5): 921-924. doi: 10.1149/1.2108763 [86] YUAN S H, MAO X H, ALSHAWABKEH A N. Efficient degradation of TCE in groundwater using Pd and electro-generated H2 and O2: A shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions [J]. Environmental Science & Technology, 2012, 46(6): 3398-3405. [87] 朱卫国, 匡少平, 宋洋, 等. 三维电极反应器导电粒子去除水中4-氯酚的性能研究 [J]. 工业用水与废水, 2018, 49(4): 47-51. doi: 10.3969/j.issn.1009-2455.2018.04.011 ZHU W G, KUANG S P, SONG Y, et al. Study on three dimension electrodes reactor conductive particles removing 4-chlorophenol from water [J]. Industrial Water & Wastewater, 2018, 49(4): 47-51(in Chinese). doi: 10.3969/j.issn.1009-2455.2018.04.011
[88] 辛岳红, 魏刚, 魏云鹏, 等. 沸石负载复合氧化物粒子电极的制备及其电催化活性 [J]. 北京化工大学学报(自然科学版), 2010, 37(2): 54-58. XIN Y H, WEI G, WEI Y P, et al. Preparation of particle-electrodes of zeolites loaded with composite oxides and a study of their electrocatalytic activity [J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2010, 37(2): 54-58(in Chinese).
[89] CHEN Y, SHI W, XUE H M, et al. Enhanced electrochemical degradation of dinitrotoluene wastewater by Sn–Sb–Ag modified ceramic particulates [J]. Electrochimica Acta, 2011, 58: 383-388. doi: 10.1016/j.electacta.2011.09.047 [90] WANG Z C, MAO Y L, XU M, et al. Fabrication and enhanced electrocatalytic activity of three-dimensional sphere-stacking PbO2 coatings based on TiO2 nanotube arrays substrate for the electrochemical oxidation of organic pollutants [J]. Journal of the Electrochemical Society, 2017, 164(13): H981-H988. doi: 10.1149/2.0151714jes [91] LI X Y, XU J, CHENG J P, et al. TiO2-SiO2/GAC particles for enhanced electrocatalytic removal of acid orange 7 (AO7) dyeing wastewater in a three-dimensional electrochemical reactor [J]. Separation and Purification Technology, 2017, 187: 303-310. doi: 10.1016/j.seppur.2017.06.058 [92] TENG X L, LI J F, WANG Z Y, et al. Treatment of methyl blue wastewater by steel slag particle three-dimensional electrode system [J]. Science of Advanced Materials, 2020, 12(3): 344-349. doi: 10.1166/sam.2020.3544 [93] 张芳, 李光明, 盛怡, 等. 三维电解法处理苯酚废水的粒子电极研究 [J]. 环境科学, 2007, 28(8): 1715-1719. doi: 10.3321/j.issn:0250-3301.2007.08.012 ZHANG F, LI G M, SHENG Y, et al. Preparation of particle-electrodes for treating phenol wastewater using three-dimensional electrolysis [J]. Chinese Journal of Environmental Science, 2007, 28(8): 1715-1719(in Chinese). doi: 10.3321/j.issn:0250-3301.2007.08.012
[94] LV G F, WU D C, FU R W. Performance of carbon aerogels particle electrodes for the aqueous phase electro-catalytic oxidation of simulated phenol wastewaters [J]. Journal of Hazardous Materials, 2009, 165(1-3): 961-966. doi: 10.1016/j.jhazmat.2008.10.090 [95] ZHI J F, WANG H B, NAKASHIMA T, et al. Electrochemical incineration of organic pollutants on boron-doped diamond electrode. Evidence for direct electrochemical oxidation pathway [J]. Journal of Physical Chemistry B, 2003, 107(48): 13389-13395. doi: 10.1021/jp030279g [96] 王琳, 金艳, 宋兴福, 等. 三维电催化氧化处理对硝基苯酚废水 [J]. 华东理工大学学报(自然科学版), 2018, 44(3): 289-295,315. WANG L, JIN Y, SONG X F, et al. p-Nitrophenol wastewater treatment by three-dimensional electrochemical oxidation process [J]. Journal of East China University of Science and Technology, 2018, 44(3): 289-295,315(in Chinese).
[97] 张太亮, 李元璐, 罗雪梅, 等. 三维光电催化氧化对硝基苯酚的研究 [J]. 现代化工, 2019, 39(6): 172-177. ZHANG T L, LI Y L, LUO X M, et al. Three-dimensional photoelectrochemical oxidation of p-Nitrophenol [J]. Modern Chemical Industry, 2019, 39(6): 172-177(in Chinese).
[98] MARTÍNEZ-HUITLE C A, BRILLAS E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review [J]. Applied Catalysis B:Environmental, 2009, 87(3/4): 105-145. [99] WU X B, YANG X D, WU D C, et al. Feasibility study of using carbon aerogel as particle electrodes for decoloration of RBRX dye solution in a three-dimensional electrode reactor [J]. Chemical Engineering Journal, 2008, 138(1-3): 47-54. doi: 10.1016/j.cej.2007.05.027 [100] 魏金枝, 张少平, 胡琴, 等. 三维粒子电极处理染料废水的效能及机制 [J]. 环境工程学报, 2015, 9(4): 1715-1720. doi: 10.12030/j.cjee.20150432 WEI J Z, ZHANG S P, HU Q, et al. Efficiency and mechanism of three-dimensional particle electrode for treating dyes wastewater [J]. Chinese Journal of Environmental Engineering, 2015, 9(4): 1715-1720(in Chinese). doi: 10.12030/j.cjee.20150432
[101] ZHANG Y Q, LI M, ZHANG Q. Silicon-modified ferric hydroxide for catalytic ozonation of nitrobenzene in aqueous solution [J]. Desalination and Water Treatment, 2015, 54(10): 2902-2908. doi: 10.1080/19443994.2014.905979 [102] 吴伟, 吴春笃. 电催化氧化技术处理硝基苯废水的试验研究 [J]. 环境科学与技术, 2006, 29(11): 82-85. doi: 10.3969/j.issn.1003-6504.2006.11.033 WU W, WU C D. Experimental study on treatment of wastewater containing nitrobenzene by electro-oxidation technology [J]. Environmental Science & Technology, 2006, 29(11): 82-85(in Chinese). doi: 10.3969/j.issn.1003-6504.2006.11.033
[103] 杨瑞霞, 毛存峰. 三维电极电解硝基苯废水处理实验研究 [J]. 油气田环境保护, 2006, 16(1): 29-31. doi: 10.3969/j.issn.1005-3158.2006.01.010 YANG R X, MAO C F. Experimental study on electrolysis of nitrobenzene wastewater with three-dimensional electrode [J]. Environmental Protection of Oil and Gas Fields, 2006, 16(1): 29-31(in Chinese). doi: 10.3969/j.issn.1005-3158.2006.01.010
[104] 肖智, 陆雪梅, 徐炎华. 复极性三维电极法处理硝基苯废水的实验研究 [J]. 环境工程学报, 2011, 5(12): 2647-2650. XIAO Z, LU X M, XU Y H. Study on nitrobenzene simulated wastewater using bipolar three-dimensional electrode method [J]. Chinese Journal of Environmental Engineering, 2011, 5(12): 2647-2650(in Chinese).
[105] SILVA R C, RODRIGUES J A D, RATUSZNEI S M et al. Anaerobic treatment of industrial biodiesel wastewater by an ASBR for methane production [J]. Applied Biochemistry and Biotechnology Advances, 2013, 170(1): 105-118. doi: 10.1007/s12010-013-0171-9 [106] YAN L, MA H Z, WANG B et al. Electrochemical treatment of petroleum refinery wastewater with three-dimensional multi-phase electrode [J]. Desalination, 2011, 276(1/3): 397-402. [107] 张春晖, 苏佩东, 唐佳伟等. 焦粉复极性三维电极反应器处理焦化废水研究 [J]. 煤炭科学技术, 2015, 43(11): 147-151. ZHANG C H, SU P D, TANG J W, et al. Study on coke powder bipolar three-dimensional electrode reactor applied to treat coking wastewater [J]. Coal Science and Technology, 2015, 43(11): 147-151(in Chinese).
[108] LI X, ZHU W, WANG C, et al. The electrochemical oxidation of biologically treated citric acid wastewater in a continuous-flow three-dimensional electrode reactor (CTDER) [J]. Chemical Engineering Journal, 2013, 232: 495-502. doi: 10.1016/j.cej.2013.08.007 [109] CHO S, KIM C, HWANG I. Electrochemical degradation of ibuprofen using an activated-carbon-based continuous-flow three-dimensional electrode reactor (3DER) [J]. Chemosphere, 2020, 259: 127382. doi: 10.1016/j.chemosphere.2020.127382 [110] 刘业翔. 功能电极材料及其应用[M]. 长沙: 中南工业大学出版社, 1996. LIU Y X. Functional electrode materials and their applications[M]. Changsha: Central South University of Technology Press, 1996(in Chinese).
[111] WANG C, HUANG Y K, ZHAO Q, et al. Treatment of secondary effluent using a three-dimensional electrode system: COD removal, biotoxicity assessment, and disinfection effects [J]. Chemical Engineering Journal, 2014, 243: 1-6. doi: 10.1016/j.cej.2013.12.044 [112] SHEN B, WEN X, HUANG X H. Enhanced removal performance of estriol by a three-dimensional electrode reactor [J]. Chemical Engineering Journal, 2017, 327: 597-607. doi: 10.1016/j.cej.2017.06.121 [113] ZHAN J H, LI Z X, YU G, et al. Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in situ regenerate granular activated carbon particle electrodes [J]. Separation and Purification Technology, 2019, 208: 12-18.