-
铁可参与各种生物过程,如氧气运输、酶转化和DNA/RNA修复等[1-5]。但过量的铁会导致各种疾病,如细胞损伤、肝炎、器官功能障碍、阿尔茨海默病、帕金森病等。因此,定量检测铁对于监测细胞代谢和了解生物反应的机制具有重要意义[6-10],快速、灵敏、简便地测定铁离子(Fe3+)至关重要。
目前,针对Fe3+的检测方法主要有原子吸收光谱、荧光技术、电化学及比色等[11-18],所依据的检测原理主要包括氧化、填充、d-d跃迁等。其中,原子吸收光谱、荧光技术、电化学3种方法存在使用有毒溶剂、对设备要求较高、检测限高等缺点。相对其他检测方法而言,比色法具有易识别、灵敏度高、选择性好等优点,因此也是当下研究较多的领域。但是传统的比色法主要使用邻二氮菲试剂和硫氰化钾试剂来检测铁离子,存在使用稳定性差的缓冲溶液、用量不准、检测限高等缺点[19-20],因此,选择合适的比色试剂用于Fe3+的检测成为研究焦点。
四联吡啶分子具有三齿吡啶氮原子的结构,能与金属离子进行配位[21-22]。羧基作为配体也易与金属离子进行配位[23-25]。本研究以四联吡啶和5-溴甲基-间苯二甲酸二甲酯为原料,以N,N-二甲基甲酰胺为溶剂,通过亲核取代和水解反应制备吡啶鎓盐分子,用于识别水中的Fe3+。
新型吡啶鎓盐分子的合成及其对Fe3+的检测
Syntheses of novel pyridinium salt and its performance on ferric ion detection
-
摘要: 针对水中铁离子(Fe3+)检测存在使用有毒溶剂、对设备要求较高、检测限高等缺点,以四联吡啶和5-溴甲基-间苯二甲酸二甲酯为原料,以N,N-二甲基甲酰胺为溶剂,通过亲核取代和水解反应制备出一种新型的铁离子检测探针——吡啶鎓盐分子。运用一系列的表征技术分析了吡啶鎓盐分子的性质,并通过实验探察了共存离子、Fe3+的浓度等对吡啶鎓盐分子识别Fe3+的影响。表征实验结果表明,吡啶鎓盐分子结构具有三齿吡啶氮和羧基,使其与Fe3+之间具有很高的亲和力,可以与Fe3+配位形成金属络合物。识别实验结果表明,吡啶鎓盐分子对Fe3+的络合显色实现了对Fe3+的专一性检测,其检测限为4.8 ×10−7 mol·L−1;在Cd2+、Zn2+、Mn2+、Ni2+、Cu2+、Fe2+和K+ 等多种干扰离子存在条件下,对Fe3+仍具有良好的识别效果,体现出较强的抗干扰性能。综上所述,新型吡啶鎓盐分子结构中具有三齿吡啶氮和羧基,使其对水中Fe3+具有易识别、灵敏度高、选择性好等优点。Abstract: To solve the problems existing in the process of Fe3+ detection, such as the used toxic solvents, high requirements for equipment and high detection limit, a novel Fe3+ detection probe-pyridinium salt molecule was prepared by nucleophilic substitution and hydrolysis reaction when tetrapyridine and dimethyl 5-bromomethyl-m-phthalate were taken as raw materials and N, N-dimethylformamide was taken as solvent. A series of characterization techniques were used to analyze the properties of pyridinium salt, and the effects of coexisting ions and Fe3+ concentration on Fe3+ recognition by pyridinium salt molecule were investigated. Characterizing experimental results showed that pyridinium salt molecular structure had tridentate pyridine nitrogen and carboxyl groups, which presented a high affinity with Fe3+ and could form metal complexes through coordination with Fe3+. The detection experimental results indicated that the specific detection of Fe3+ was achieved by complex chromogenic of pyridinium salt in the presence of Fe3+, and the detection limit was about 4.8×10−7 mol·L−1; No change occurred in the probe signal in the presence of multiple interfering ions, such as Cd2+, Zn2+, Mn2+, Ni2+, Cu2+, Fe2+, K+ and so on, showing good specific detection for Fe3+. In conclusion, the novel pyridinium salt has the advantages of easy recognition, high sensitivity and good selectivity to Fe3+ in water due to its tridentate pyridine nitrogen and carboxyl groups.
-
Key words:
- pyridinium salt /
- nucleophilic substitution /
- metal complexes /
- Fe3+ detection
-
表 1 D-COOH比色法与其他检测法的对比
Table 1. Comparison of D-COOH colorimetric method with other detection methods
检测试剂 溶剂 Fe3+检测限/
(mol·L−1)有机纳米片 TPE-BIMEG和994 µL HPES 0.1×10−9 金属锌环化合物 N,N-二甲基甲酰胺 2.5×10−6 Ln-MOF 乙醇 1.0×10−5 磷腈 四氢呋喃/水 4.8×10−6 MOF N,N-二甲基甲酰胺 1.7×10−4 Eu-MOF N,N-二甲基甲酰胺 3.3× 10−7 Eu-MOF-吡啶 水 5.0×10−4 苯并咪唑 三异丙基乙磺酰和N,N-二甲基甲酰胺 1.2×10−6 D-COOH 水 4.8×10−7 -
[1] ANDREWS N C N. Disorders of iron metabolism[J]. The New England Jouranl of Medicine, 1999, 341: 1986-1995. doi: 10.1056/NEJM199912233412607 [2] HAASJ D, BROWNLIE T J. Iron deficiency and reduced work capacity: A critical review of the research to determine a causal relationship[J]. Journal of Nutrition, 2001, 131: 676-690. doi: 10.1093/jn/131.2.676S [3] TESFALDETZ O, VAN STADENJ F, STEFAN R I. Sequential injection spectrophotometric determination of iron as Fe(Ⅱ) in multi-vitamin preparations using 1, 10-phenanthroline as complexing agent[J]. Talanta, 2004, 64(5): 1189-1195. doi: 10.1016/j.talanta.2004.02.044 [4] AKATSUKA K, MCLAREN J W, LAM J W, et al. Determination of iron and ten other trace elements in the Open Ocean Seawater reference material NASS-3 by inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1992, 7: 889-894. doi: 10.1039/ja9920700889 [5] ELROD V A, JOHNSON K S, COALE K H. Determination of subnanomolar levels of iron(II) and total dissolved iron in seawater by flow injection analysis with chemiluminescence detection[J]. Analytical Chemistry, 1991, 63(9): 893-898. doi: 10.1021/ac00009a011 [6] PERLMUTTER J S, TEMPEL L W, BLACK K J, et al. MPTP induces dystonia and parkinsonism. Clues to the pathophysiology of dystonia[J]. Neurology, 1997, 49(5): 1432-1436. doi: 10.1212/WNL.49.5.1432 [7] AISEN P, WESSLING-RESNICK M, LEIBOLD E A. Iron metabolism[J]. Current Opinion in Chemical Biology, 1999, 3(2): 200-206. doi: 10.1016/S1367-5931(99)80033-7 [8] MOON S Y, NA R C, KIM Y H, et al. New Hg2+-selective chromo- and fluoroionophore based upon 8-hydroxyquinoline[J]. The Journal of Organic Chemistry, 2004, 69: 181-183. doi: 10.1021/jo034713m [9] PRODI L, BARGOSSI C, MONTALTI M, et al. An effective fluorescent chemosensor for mercury ions[J]. Journal of the American Chemical Society, 2000, 122(28): 6769-6770. doi: 10.1021/ja0006292 [10] ZHOU G, WANG H, YANG M, et al. An NBD fluorophore-based colorimetric and fluorescent chemosensor for hydrogen sulfide and its application for bioimaging[J]. Tetrahedron, 2013, 69(2): 867-870. doi: 10.1016/j.tet.2012.10.106 [11] SEN S, SARKAR S, CHATTOPADHYAY B, et al. A ratiometric fluorescent chemosensor for iron: Discrimination of Fe2+ and Fe3+ and living cell application[J]. The Analyst, 2012, 137(14): 3335-3342. doi: 10.1039/c2an35258c [12] KUMAR M, KUMAR N, BHALLA V. FRET-induced nanomolar detection of Fe2+ based on cinnamaldehyde-rhodamine derivative[J]. Tetrahedron Letters, 2011, 52(33): 4333-4336. doi: 10.1016/j.tetlet.2011.06.044 [13] HONG Y, XIONG H, LAM J W, et al. Fluorescent bioprobes: structural matching in the docking processes of aggregation-induced emission fluorogens on DNA surfaces[J]. Chemistry-A European Journal, 2010, 16: 1232-1245. doi: 10.1002/chem.200900778 [14] LM A, YI A, SY A, et al. Recent advances and progress of fluorescent bio-/chemosensors based on aggregation-induced emission molecules[J]. Dyes and Pigments, 2019, 162: 611-623. doi: 10.1016/j.dyepig.2018.10.045 [15] ABBASPOUR A, KHAJEHZADEH A, GHAFFARINEJAD A. Development of a new method based on scanner electrochemistry: Applied for the speciation of iron(II) and iron(III)[J]. Analytical Methods, 2011, 3(10): 2268-2272. doi: 10.1039/c1ay05257h [16] KATO D, ODA A, TANAKA M, et al. Poly‐ε‐lysine modified nanocarbon film electrodes for LPS detection[J]. Electroanalysis, 2014, 26(3): 618-624. doi: 10.1002/elan.201300542 [17] ION A, BUDA M, MOUTET J, et al. Coordination of ferrocenyl ligands bearing bipy subunits: electrochemical, structural and spectroscopic studies[J]. European Journal of Inorganic Chemistry, 2002: 1357-1366. [18] KUMAR S A, THAKUR N, PARAB H J, et al. A visual strip sensor for determination of iron[J]. Analytica Chimica Acta, 2014, 851: 87-94. doi: 10.1016/j.aca.2014.08.047 [19] 廖滢滢. 邻二氮菲分光光度法测定水中铁离子含量实验设计[J]. 化工管理, 2008, 21(4): 72-73. [20] 陆燕海. 审视KSCN/K4[Fe(CN)6]溶液检验铁离子的实验[J]. 化学教学, 2011, 7(1): 52-53. [21] SAHA S, SANTRA S, GHOSH P. CuII-templated threading of a bis-amide-tris-amine macrocycle by substituted 2, 2′-bipyridyl derivatives assisted by strong π-π stacking and second-sphere H-bonding interactions[J]. European Journal of Inorganic Chemistry, 2014, 12: 2029-2037. [22] FU Z, CHEN Y, ZHANG J, et al. Correlation between the photoactive character and the structures of two novel metal organic frameworks[J]. Journal of Materials Chemistry, 2011, 21(22): 7895-7897. doi: 10.1039/c1jm10945f [23] SUN Y Q, ZHANG J, JU Z F, et al. Two-dimensional noninterpenetrating transition metal coordination polymers with large honeycomb-like hexagonal cavities constructed from a carboxybenzyl viologen ligand[J]. Crystal Growth & Design, 2005, 5(5): 1939-1943. [24] HIGUCHI M, TANAKA D, HORIKE S, et al. Porous coordination polymer with pyridinium cationic surface [Zn2(tpa)2(cpb)][J]. Journal of the American Chemical Society, 2009, 131(30): 10336-10337. doi: 10.1021/ja900373v [25] YAO Q X, JU Z F, JIN X H, et al. Novel polythreaded coordination polymer: From an armed-polyrotaxane sheet to a 3D polypseudorotaxane array, photo- and thermochromic behaviors[J]. Inorganic Chemistry, 2009, 48(4): 1266-1268. doi: 10.1021/ic8021672 [26] 周杉杉, 李人宇, 马文慧. Zn2+-邻菲啰啉-达旦黄体系光度法测定食盐中锌[J]. 中国调味品, 2012, 37(1): 69-73. doi: 10.3969/j.issn.1000-9973.2012.01.021 [27] KIM Y S, LEE J J, LEE S Y, et al. A highly sensitive benzimidazole-based chemosensor for the colorimetric detection of Fe(II) and Fe(III) and the fluorometric detection of Zn(II) in aqueous media[J]. RSC Advances, 2016, 6: 61505-61515. doi: 10.1039/C6RA10086D [28] NAKMOTO K Z. Infrared and Raman Spectra of Inorganic and Coordination Compounds[M]. Third Edition. John Wiler & Sons, 1978. [29] JIN X H, CHEN C, REN C X, et al. Bright white-light emission from a novel donor-acceptor organic molecule in the solid state via intermolecular charge transfer[J]. Chemical Communications, 2014, 50(98): 15878-15881. [30] CHEN C, JIN X H, ZHOU X J, et al. Photo-facilitated aggregation and correlated color temperature adjustment of single component organic solid state white-light emitting materials[J]. Journal of Materials Chemistry C, 2015, 3(17): 4563-4569. doi: 10.1039/C4TC02771J [31] KUMAR G, GUDA R, HUSAIN A, et al. A functional Zn(II) metallacycle formed from an N-heterocyclic carbene precursor: A molecular sensor for selective recognition of Fe3+ and IO4− ions[J]. Inorganic Chemistry, 2017, 56: 5017-5025. doi: 10.1021/acs.inorgchem.7b00098 [32] XU H, HU H C, CAO C S, et al. Lanthanide organic framework as a regenerable luminescent probe for Fe3+[J]. Inorganic Chemistry, 2015, 54: 4585-4587. doi: 10.1021/acs.inorgchem.5b00113 [33] KAGIT R, YILDIRIM M, OZAY O, et al. Phosphazene based multicentered naked-eye sluorescent sensor with high selectivity for Fe3+ ions[J]. Inorganic Chemistry, 2014, 53: 2144-2151. doi: 10.1021/ic402783x [34] WANG B, YANG Q, GUO C, et al. Stable Zr(IV)-based metal-organic frameworks with predesigned functionalized ligands for highly selective detection of Fe(III) Ions in water[J]. ACS Applied Materials & Interfaces, 2017, 9: 10286-10295. [35] ZHOU Z X, LI L, LI H H, et al. A flexible Eu(III)-based metal-organic framework: Turn-off luminescent sensor for the detection of Fe(III) and picric acid[J]. Dalton Transactions, 2013, 42: 12403-12409. doi: 10.1039/c3dt51081f [36] YANGY, WANG X, CUI Q, et al. Self-assembly of fluorescent organic nanoparticles for iron(III) sensing and cellular imaging[J]. ACS Applied Materials & Interfaces, 2016, 8: 7440-7448.