-
随着工业园区承接的企业逐渐增多,工业园区内的水质成分变得复杂,污染物浓度高,可生化性较差,水质不稳定[1]。工业园区的污水中含有大量溶解性有机物(dissolved organic matter, DOM),其来源和结构影响了水中污染物的生物降解性及重金属迁移转化规律[2]。为实现工业园区污水的高效处理与资源化利用,有必要采用快速、低成本的污染物溯源方法,研究其中DOM的主要来源与归趋。
污染物溯源的方法主要包括13C固态核磁共振波谱技术(13C-NMR)[3]、傅里叶变换红外光谱法(FTIR)[4]、高效液相色谱法(HPLC)[5]、紫外-可见吸收光谱法(UV-Vis)[6]以及三维荧光光谱法(3D-EEMs)[7]等。这些溯源方法各有特点,13C-NMR 具有很高的特异性,但13C的自然存在浓度很低,样品需要扫描较长时间才能累出足够强度的13C-NMR图谱供判读;HPLC可以通过选用特征填料柱与流动相实现对有机组分进行定性分离与分析,但必须用已知物的色谱峰进行对比或与质谱、光谱联用才能获得直接肯定的结果。UV-Vis利用污染物对紫外或者可见光的吸收特性来表征DOM的浓度和来源[8],3D-EEMs则是采用三维激发/发射矩阵实现对有机物进行特异性识别[4],这2种方法具有灵敏度高、操作简单、成本低等特点,因此也被广泛应用于DOM的溯源研究。
由于3D-EEMs获得的荧光图谱中多种荧光组分相互重叠使得荧光数据难以处理,导致对相应的荧光组分溯源造成困难,因此对三维荧光数据的分析尤为重要。为了更清晰地识别DOM的各组分特征,平行因子(parallel factor, PARAFAC)分析方法被应用于解析DOM的荧光光谱。利用PARAFAC分析方法,可以从三维荧光光谱图中提取出不同荧光组分,进而识别DOM中各组分的来源与特征,从而极大程度避免了主观因素对实验分析结果的影响,具有较高的识别效率[9]。LIU[6]采用三维荧光光谱和13C核磁共振波谱,紫外-可见光谱等方法,对滇池3种优势植物的全部有机质(OM)和溶解有机质(DOM)的化学性质进行了研究和比较,讨论了其对湖泊的影响;CHEN等[10]为了评价垃圾有机质和DOM之间的化学成分关系,收集了凋落叶,使用紫外可见分光光度法和荧光分光光度法进行组分提取。尽管国内外很多研究工作将3D-EEMs与PARAFAC分析方法结合,应用于分析湖泊、河流以及土壤中DOM的来源和组成,但鲜有报道利用该方法对工业园区污水处理厂的进水及各处理工艺段的DOM进行溯源研究。
本研究选取某工业园区内的污水处理厂为研究对象,采用紫外-可见光谱以及三维荧光光谱对11个进水管道和处理各工艺段的水样进行了检测,结合PARAFAC探究了污水厂水体中主要污染物的来源和类别,最后对水质参数和各组分的荧光强度进行了相关性分析,评价了污水厂的处理措施对DOM的降解效果,以期为污水厂中特征污染物的处理效果评价提供参考。
基于三维荧光光谱-平行因子分析法的工业园区污水溶解性有机物溯源与归趋
Tracing and regression of dissolved organic matter in wastewater from the industrial park based on 3D-fluorescence spectrum-parallel factor analysis
-
摘要: 本研究以某工业园区内的污水处理厂为研究对象,使用紫外-可见光谱和三维荧光光谱对11个进水管道和水处理各工艺段的水样进行检测,结合平行因子分析法探究了污水厂水体中主要污染物的来源和类别,最后对水质参数和各组分进行了相关性分析。紫外-可见光谱、三维荧光光谱结合平行因子分析结果表明,污水主要有5种荧光组分,其中C1,C2,C3均属于腐殖酸类物质;C4属于蛋白质类,近似于色氨酸类物质;C5属于新发现的组分。相关性分析结果表明, C3的荧光强度可以大致判断污水的芳香度, C2的荧光强度推断污水中的NH3-N浓度,三维荧光光谱数据可以对水质参数评价进行补充。本研究可为发展高效低成本的污水厂尾水深度处理技术提供参考。Abstract: In this study, a sewage plant in an industrial park was taken as the research object. Both the ultraviolet-visible spectroscopy and three-dimensional fluorescence spectroscopy were used to analyze the water samples from 11 influent pipelines and various stages of wastewater treatment process. Combined with parallel factor analysis, sources and categories of major pollutants in the wastewater were systematically explored. Finally, the correlation between the water quality parameters and its components in water samples was analyzed. The results of UV-Vis spectroscopy, three-dimensional fluorescence spectroscopy combined with parallel factor analysis showed that there were mainly five fluorescent components in the sewage, C1, C2, and C3 belonged to humic acid, C4 belonged to protein, and was similar to tryptophan, C5 belonged to a newly discovered component. The correlation analysis results showed that the fluorescence intensity of C3 was a roughly judge of the aromaticity of sewage, the fluorescence intensity of C2 was an inference of the NH3-N concentration in the sewage, and the three-dimensional fluorescence spectra data could supplement the evaluation of water quality parameters. This research can also provide an important reference for the development of high-efficiently and low-cost advanced treatment processes in industrial sewage plants.
-
表 1 5种组分的激发/发射波长、种类以及参考文献
Table 1. Spectral characteristics of the five components identified in this study
表 2 5种组分在水处理各工艺段相对含量变化情况
Table 2. Relative content changes of 5 components at each stage of the water treatment process
水处理工艺段 各组分相对含量a C1 C2 C3 C4 C5 调节池 1.00 1.00 1.00 1.00 1.00 气浮池 0.46 0.75 0.60 0.65 0.68 水解酸化池 0.45 0.73 0.66 0.61 0.57 混凝沉淀池 0.24 0.29 0.45 0.54 0.53 A2/O 0.16 0.21 0.25 0.50 0.21 二沉池 0.10 0.19 0.25 0.40 0.10 催化氧化反应池 0.08 0.14 0.23 0.28 0.07 斜板沉淀池 0.04 0.10 0.13 0.08 0.02 尾水 0.03 0.04 0.04 0.06 0.01 注:a表示设定调节池中各组分相对含量为1。 表 3 各组分的Fmax与各水质参数的相关性以及每个相关性对应的P值
Table 3. Correlation analysis between Fmax of each component and the corresponding P values
Fmax-C1 Fmax-C2 Fmax-C3 Fmax-C4 Fmax-C5 COD值 NH3-N 电导率 pH SUVA254 Fmax-C1 1.000 0.952** 0.771** 0.615** 0.747** 0.868** 0.860** 0.844** 0.772* 0.918** Fmax-C2 — 1.000 0.771** 0.600** 0.747** 0.941** 0.919** 0.932** 0.781* 0.922** Fmax-C3 — — 1.000 0.652** 0.773** 0.929** 0.928** 0.935** 0.780* 0.960** Fmax-C4 — — — 1.000 0.538** 0.881** 0.889** 0.930** 0.763* 0.789** Fmax-C5 — — — — 1.000 0.969** 0.974** 0.914** 0.842** 0.948** COD值 — — — — — 1.000 0.994** 0.940** 0.750** 0.906** NH3-N — — — — — — 1.000 0.935** 0.813** 0.913** 电导率 — — — — — — — 1.000 0.840** 0.949** pH — — — — — — — — 1.000 0.759* SUVA254 — — — — — — — — — 1.000 注:**表示在P<0.01 级别的相关性显著;*表示在P<0.05 级别的相关性显著。 -
[1] BAGHOTH S A, SHARMA S K, AMY G L. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research, 2011, 45(2): 797-809. doi: 10.1016/j.watres.2010.09.005 [2] 陈慧敏, 俞晓琴, 朱俊羽, 等. 太湖有色可溶性有机物(CDOM)对COD及BOD5的指示意义[J]. 湖泊科学, 2021, 33(5): 1376-1388. doi: 10.18307/2021.0507 [3] DING Q, YAMAMURA H, YONEKAWA H, et al. Differences in behaviour of three biopolymer constituents in coagulation with polyaluminium chloride: Implications for the optimisation of a coagulation-membrane filtration process[J]. Water Research, 2018, 133(6): 255-263. [4] ZHENG L, SONG Z, MENG P, et al. Seasonal characterization and identification of dissolved organic matter (DOM) in the Pearl River, China[J]. Environmental Science and Pollution Research, 2016, 23(8): 7462-7469. doi: 10.1007/s11356-015-5999-9 [5] FERGUSON T, BERNICKY A, KOZIN I, et al. HPLC-detector based on hadamard-transform fluorescence excitation-emission-matrix spectroscopy[J]. Analytical Chemistry, 2021, 93(23): 8116-8121. doi: 10.1021/acs.analchem.1c01037 [6] LIU S, HE Z, TANG Z, et al. Linking the molecular composition of autochthonous dissolved organic matter to source identification for freshwater lake ecosystems by combination of optical spectroscopy and FT-ICR-MS analysis[J]. Science of the Total Environment, 2020, 703(3): 764-770. [7] DEPALMA S G S, ARNOLD W R, MCGEER J C, et al. Variability in dissolved organic matter fluorescence and reduced sulfur concentration in coastal marine and estuarine environments[J]. Applied Geochemistry, 2011, 26(3): 394-404. doi: 10.1016/j.apgeochem.2011.01.022 [8] HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3): 955-969. doi: 10.4319/lo.2008.53.3.0955 [9] 张欢. 派河和南淝河溶解性有机质(DOM)光谱分析及污染源解析 [D]. 合肥: 合肥工业大学, 2019. [10] CHEN H, LIU X, BLOSSER G D, et al. Molecular dynamics of foliar litter and dissolved organic matter during the decomposition process[J]. Biogeochemistry, 2020, 150(1): 17-30. doi: 10.1007/s10533-020-00684-5 [11] LIN H, GUO L. Variations in colloidal DOM composition with molecular weight within Individual water samples as characterized by flow field-flow fractionation and EEM-PARAFAC analysis[J]. Environmental Science & Technology, 2020, 54(3): 1657-1667. [12] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. (第4版), 北京: 中国环境科学出版社, 2002. [13] 顾乾恒. EEMs-PARAFAC法分析环境中DOM常见组分简述[J]. 广东化工, 2021, 48(16): 87-88. doi: 10.3969/j.issn.1007-1865.2021.16.034 [14] ZHANG Y, LIU M, QIN B, et al. Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation[J]. Hydrobiologia, 2009, 627(1): 159-168. doi: 10.1007/s10750-009-9722-z [15] LARSSON T, WEDBORG M, TURNER D. Correction of inner-filter effect in fluorescence excitation-emission matrix spectrometry using Raman scatter[J]. Analytica Chimica Acta, 2007, 583(2): 357-363. doi: 10.1016/j.aca.2006.09.067 [16] 蒲淑娟, 贺培翔, 张悦, 等. Matlab-三维荧光法对龙头水质的分析研究[J]. 石油化工应用, 2021, 40(5): 102-106. doi: 10.3969/j.issn.1673-5285.2021.05.023 [17] KAMSTRUP-NIELSEN M H, JOHNSEN L G, BRO R. Core consistency diagnostic in PARAFAC2[J]. Journal of Chemometrics, 2013, 27(5): 99-105. doi: 10.1002/cem.2497 [18] YU G H, WU M J, LUO Y H, et al. Fluorescence excitation-emission spectroscopy with regional integration analysis for assessment of compost maturity[J]. Waste Management, 2011, 31(8): 1729-1736. doi: 10.1016/j.wasman.2010.10.031 [19] MIELNIK L, KOWALCZUK P. Optical characteristic of humic acids from lake sediments by excitation-emission matrix fluorescence with PARAFAC model[J]. Journal of Soils and Sediments, 2018, 18(8): 2851-2862. doi: 10.1007/s11368-018-1947-x [20] ZITO P, PODGORSKI D C, JOHNSON J, et al. Molecular-level composition and acute toxicity of photosolubilized petrogenic carbon[J]. Environmental Science & Technology, 2019, 53(14): 8235-8243. [21] DING R, ZHANG D, GAO Y, et al. Characteristics of refractory organics in industrial wastewater treated using a Fenton-coagulation process[J]. Environmental Technology, 2021, 42(22): 3432-3440. doi: 10.1080/09593330.2020.1732476 [22] ZHANG J, YIN H, SAMUEL B, et al. A novel method of three-dimensional hetero-spectral correlation analysis for the fingerprint identification of humic acid functional groups for hexavalent chromium retention[J]. RSC Advances, 2018, 8(7): 3522-3529. doi: 10.1039/C7RA12146F