-
Pb2+是环境中主要的重金属污染物之一,其无法被生物降解且能够生物积累,即使低剂量暴露也会危害人体健康和生态安全[1-2]。水体重金属污染处理方法包括化学沉淀、吸附、膜分离、离子交换和生物絮凝法等[3-6]。其中,由于吸附法具有操作简便、吸附材料来源广泛、适用范围广等优点近年来备受关注,开发高效、廉价的新型吸附材料是国内外水体重金属修复领域的研究热点之一。生物炭(biochar)一般指生物质在低氧或缺氧的环境中,高温缓慢热解得到的一种含碳量高、富有孔隙结构的碳化物质,具有较大的比表面积和孔隙度,表面官能团丰富,可以高效吸附重金属,是一种具有良好环境效益的吸附材料。
2019年我国市政污泥年均产量超6 000×104 t[7],市政污泥是水处理的副产品,含有多种有害污染物(如重金属、病菌等),处理处置不当将引起严重的二次污染。现有的污泥处理方式主要有焚烧、填埋、堆肥、厌氧消化等。上述方式可能导致土壤、水体污染且存在处理不完全、成本较高等问题[8-10]。考虑到污泥中富含有机质,有研究发现可依托高温热解工艺处理污泥并获得污泥基生物炭,该产物可用于吸附水体中的重金属[11-13]。郑凯琪等[14]研究了不同热解温度下污泥生物炭对重金属的吸附效果,结果表明吸附效率随热解温度增加而增加。
如何将吸附剂从水体中分离,是当前吸附处理的工艺难题之一。有研究[15-16]表明,通过磁改性生物炭,既可以提高生物炭的吸附能力,产物又可通过磁力回收以解决吸附剂难回收的技术难题。目前,磁性生物炭的制备大多采用湿法,即将生物炭原料浸泡于含铁离子的溶液中,然后超声分散、干燥后再进行煅烧,进而获得磁性生物炭[15-17]。赵冰等利用FeCl2和FeCl3复配溶液进行了湿法负载,经改性后获得的磁性生物炭最大Cu2+吸附容量较未改性生物炭增加了60.08%[18]。但实际操作中,湿法改性会出现热解前需消耗大量能源脱水干化、浸渍后颗粒团聚现象严重、固液分离困难等环境不友好的问题[15-17, 19-21]。
为解决上述湿法制备磁性生物炭的不足,本研究以市政污泥为基质,基于无溶剂法制备了磁性污泥基生物炭,并利用扫描电子显微镜(SEM)、傅立叶变换红外吸收光谱(FTIR)、X射线光电子能谱(XPS)、磁滞回线(VMS)、拉曼光谱(Raman)等技术对材料进行表征;选取Pb2+作为代表性重金属,分析了pH、温度、背景离子强度及吸附剂投加量对污泥基磁性生物炭吸附效能的影响,结合吸附动力学、吸附等温线、吸附热力学及吸附前后表征结果,系统揭示了无溶剂法制备的污泥基磁性生物炭的Pb2+吸附机理,以期为开发环境友好型重金属吸附材料提供参考。
磁性污泥基生物炭对Pb2+的吸附性能
Adsorption performance of magnetic sludge-derived biochar towards Pb2+
-
摘要: 为克服湿法制备磁性生物炭颗粒时团聚严重、固液分离困难、热解前需消耗大量能源脱水干化的问题,本研究以市政污泥为原料,通过无溶剂法热解制备了磁性污泥基生物炭(MSBC-2),并利用SEM、FTIR、XPS、VMS和Raman等方法对产物的表面结构与特征进行了表征。基于序批实验,分析了pH、温度、背景离子强度、生物炭投加量对该吸附材料的Pb2+吸附性能的影响,并进行了吸附动力学、吸附等温线及吸附热力学研究。结果表明:MSBC-2的Pb2+去除率随pH及温度的升高而升高,pH>4后去除率基本不变,离子强度对Pb2+去除率基本无影响。MSBC-2对Pb2+的吸附行为符合准二级动力学模型及Langmuir模型,表明吸附过程的限速步骤为化学反应,吸附为单分子层吸附;MSBC-2的反应速率常数k2是未改性生物炭的4.1倍,25 ℃时最大理论吸附容量为113.36 mg·g−1,高于大多数湿法制备的磁性生物炭;该吸附过程非自发、吸热且熵增过程;MSBC-2对Pb2+的吸附机理主要包括表面络合、离子交换和物理吸附。Abstract: In order to overcome severe agglomeration, solid-liquid separation problems for magnetic biochar particles in wet preparation process, and high energy consumption for dewatering and drying before pyrolysis, a type of magnetic sludge-derived biochar (MSBC-2) was prepared by solvent-free pyrolysis method with municipal sludge as the raw material. The SEM, FTIR, XPS, VMS, and Raman techniques were applied to characterize MSBC-2. Based on the batch experiment, the effects of pH, temperature, background ionic strength, and adsorbent dosage on the Pb2+ adsorption performance were investigated, together with adsorption kinetics, isotherms, and thermodynamics. The results revealed that Pb2+ removal efficiency by MSBC-2 increased as pH and temperature rose, but remained stable when pH was above 4. The removal efficiency was almost unaffected by background ionic strength. The Pb2+ adsorption process onto MSBC-2 followed the pseudo-second-order kinetic model and Langmuir model, implying that chemisorption was the rate-limiting step and the adsorption process was monolayer adsorption. The reaction rate constant k2 of MSBC-2 was 3.1 times greater than that of the sludge-derived biochar without modification. The maximum theorical adsorption capacity of MSBC-2 was 113.36 mg·g−1 at 25℃. The adsorption was non-spontaneous, endothermic, and entropy-increasing process. The Pb2+ adsorption mechanism onto MSBC-2 included surface complexation, ion-exchange reactions and physical absorption.
-
Key words:
- solvent-free method /
- sludge /
- magnetic biochar /
- Pb2+ /
- adsorption performance
-
表 1 磁性污泥基生物炭比表面积、孔结构特征
Table 1. Specific surface area and pore structure characteristics of MSBC-2 and SBC
样品名称 BET比表面积
/(m2·g-1)总孔体积
/(m3·g-1)平均孔径
/nmMSBC-2 63.68 0.089 5.96 SBC 59.38 0.073 4.56 表 2 拉曼曲线D带和G带分析
Table 2. D-band and G-band analysis from Raman spectrum
样品名称拉曼位移/cm−1 面积 D G D G SBC 1 376.5 1 594.6 823 962 151 072 MSBC-2 1 377.0 1 597.1 691 440 129 894 MSBC-2-Pb2+ 1 363.5 1 592.9 420 701 126 569 表 3 不同吸附动力学模型拟合参数
Table 3. Adsorption kinetics parameters for various adsorption kinetics models
样品名称 Qe,exp/
(mg·g−1)准一级动力学模型 准二级动力学模型 Qe,cal/
(mg·g−1)k1/
(min−1)R2 P Qe,cal/
(mg·g−1)k2/
(g·(mg·min)−1)R2 P MSBC-2 95.75 44.35 4.79×10−3 0.878 8 0.000 6 94.97 3.90×10−3 0.999 7 <0.000 1 SBC 81.24 40.61 3.08×10−3 0.766 5 <0.000 1 75.02 9.56×10−4 0.998 3 <0.000 1 样品名称 Qe,exp/
(mg·g−1)Elovich模型 颗粒内扩散模型 a/
(mg·(g·min)−1)b/
(g·mg−1)R2 P Kid/
(mg·(g·min0.5)−1)C/
(mg·g−1)R2 P MSBC-2 95.75 3.16×102 1.48 0.889 1 <0.000 1 2.211 56.43 0.525 2 <0.000 1 SBC 81.24 1.12×102 1.44 0.995 6 <0.000 1 1.921 33.90 0.818 3 <0.000 1 表 4 不同温度下MSBC-2吸附Pb2+的Langmuir模型和Freundlich模型拟合结果
Table 4. Adsorption isotherms parameters of Pb2+ onto MSBC-2 at different temperatures for Langmuir and Freundlich models
温度
/℃Langmuir模型 Freundlich模型 Qm/(mg·g−1) KL/(L·mg−1) R2 P RL KF/(mg·g−1·(L·mg−1)1/n ) n R2 P 25 113.64 2.270 0.999 7 <0.000 1 0.001 1~0.045 8 39.958 4.024 0.752 7 0.005 2 35 131.58 1.310 0.999 9 <0.000 1 0.002 0~0.076 8 44.228 3.986 0.670 9 0.012 9 45 151.52 0.617 0.999 7 <0.000 1 0.004 2~0.150 1 49.511 3.849 0.603 6 0.023 3 表 5 MSBC-2吸附Pb2+的吸附热力学参数
Table 5. Thermodynamic parameters of Pb2+ onto MSBC-2
温度/K ΔG0/
(kJ·mol−1)ΔS0/
(kJ·(mol·K)−1)ΔH0/
(kJ·mol−1)R2 P 298.15 2.199 0 0.321 8 91.413 9 0.999 9 0.006 4 308.15 1.785 1 318.15 1.355 3 表 6 湿法制备与无溶剂法制备磁性生物炭反应速率常数和最大Pb2+理论吸附容量的对比
Table 6. Comparison of k2 and Qm of Pb2+ onto magnetic biochar prepared by wet process and this study
-
[1] JIANG W, CHEN X, PAN B, et al. Spherical polystyrene- supported chitosan thin film of fast kinetics and high capacity for copper removal[J]. Journal of Hazardous Materials, 2014, 276: 295-301. doi: 10.1016/j.jhazmat.2014.05.032 [2] 万顺利, 薛瑶, 马钊钊, 等. 茶叶基水合氧化铁吸附水中Pb(Ⅱ)的性能[J]. 环境科学, 2014, 35(10): 3782-3788. [3] ZHOU Z, LIU Y, LIU S, et al. Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin- modified biochar[J]. Chemical Engineering Journal, 2017, 314: 223-231. doi: 10.1016/j.cej.2016.12.113 [4] ZHE X, ZHANG Q, LI X, et al. A critical review on chemical analysis of heavy metal complexes in water/wastewater and the mechanism of treatment methods[J]. Chemical Engineering Journal, 2022: 429131688. [5] CHAI W, CHEUN J, KUMAR PS, et al. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application[J]. Journal of Cleaner Production, 2021: 296126589. [6] ANKITA A, UPADHYAY U, SREEDHAR I, et al. A review on valorization of biomass in heavy metal removal from wastewater[J]. Journal of Water Process Engineering, 2020: 38101602. [7] 戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020, 72(6): 30-34. [8] 薛重华, 孔祥娟, 王胜, 等. 我国城镇污泥处理处置产业化现状、发展及激励政策需求[J]. 净水技术, 2018, 37(12): 33-39. [9] 刘莹. 城市污水处理厂污泥处理处置现状与技术研究[J]. 节能与环保, 2019(1): 78-79. doi: 10.3969/j.issn.1009-539X.2019.01.031 [10] 谢昆, 尹静, 陈星. 中国城市污水处理工程污泥处置技术研究进展[J]. 工业水处理, 2020, 40(7): 18-23. [11] 丁文川, 杜勇, 曾晓岚, 等. 富磷污泥生物炭去除水中Pb (Ⅱ)的特性研究[J]. 环境化学, 2012, 31(9): 1375-1380. [12] 范世锁, 李雪, 胡凯, 等. 污泥基生物炭吸附重金属Cd的动力学和热力学[J]. 环境工程学报, 2016, 10(10): 5971-5977. doi: 10.12030/j.cjee.201505069 [13] IFTHIKAR J, WANG J, WANG Q, et al. Highly efficient lead distribution by magnetic sewage sludge biochar: Sorption mechanisms and bench applications[J]. Bioresource Technology, 2017, 238: 399-406. doi: 10.1016/j.biortech.2017.03.133 [14] 郑凯琪, 王俊超, 刘姝彤, 等. 不同热解温度污泥生物炭对Pb2+、Cd2+的吸附特性[J]. 环境工程学报, 2016, 10(12): 7277-7282. doi: 10.12030/j.cjee.201507083 [15] YI Y, HUANG Z, LU B, et al. Magnetic biochar for environmental remediation: A review[J]. Bioresource Technology, 2020: 298122468. [16] LI X, WANG C, ZHANG J, et al. Preparation and application of magnetic biochar in water treatment: A critical review[J]. Science of the Total Environment, 2020: 711134847. [17] 魏太庆, 王博, 艾丹, 等. 磁性生物炭的制备及其在环境修复中的研究进展[J]. 功能材料, 2021, 52(10): 10039-10047. doi: 10.3969/j.issn.1001-9731.2021.10.006 [18] 赵冰, 张冉, 徐新阳. 污泥基磁性生物炭及其对水体中铜离子的吸附性能[J]. 东北大学学报(自然科学版). 2021, 42(7): 1012-1018. [19] LI Y, ZIMMERMAN A, HE F, et al. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue[J]. Science of the Total Environment, 2020: 722137972. [20] JOSHUA J, HUGGINS T, HUANG Y, et al. Production of magnetic biochar from waste-derived fungal biomass for phosphorus removal and recovery[J]. Journal of Cleaner Production, 2019, 224: 100-106. doi: 10.1016/j.jclepro.2019.03.120 [21] 张连科, 王洋, 王维大, 等. 磁性羟基磷灰石/生物炭复合材料的制备及对Pb2+的吸附性能[J]. 环境科学学报, 2018, 38(11): 4360-4370. [22] VAUGHN S, KENAR J, TISSERAT B, et al. Chemical and physical properties of Paulownia elongata biochar modified with oxidants for horticultural applications[J]. Industrial Crops and Products, 2017, 97: 260-267. doi: 10.1016/j.indcrop.2016.12.017 [23] 李蕊宁, 王兆炜, 郭家磊, 等. 酸碱改性生物炭对水中磺胺噻唑的吸附性能研究[J]. 环境科学学报, 2017, 37(11): 4119-4128. [24] 周振扬, 杨驰浩, 尹微琴, 等. 氧化松木生物炭高效去除水中Pb及定量吸附机理[J]. 工业水处理, 2021, 41(7): 88-93. [25] 张伟, 杨柳, 蒋海燕, 等. 污泥活性炭的表征及其对Cr(Ⅵ)的吸附特性[J]. 环境工程学报, 2014, 8(4): 1439-1446. [26] 陈婷婷. 稻壳灰及改性稻壳灰吸附性能研究[D]. 南京: 南京理工大学, 2013. [27] 赵佳明. 生物质基多孔活性炭制备及其吸附Cr(VI)离子性能研究[D]. 哈尔滨: 黑龙江大学, 2021. [28] 于长江, 董心雨, 王苗, 等. 海藻酸钙/生物炭复合材料的制备及其对Pb(Ⅱ)的吸附性能和机制[J]. 环境科学, 2018, 39(8): 3719-3728. [29] 王鑫宇, 张曦, 孟海波, 等. 温度对生物炭吸附重金属特性的影响研究[J]. 中国农业科技导报, 2021, 23(2): 150-158. [30] 赵天赐. 负载铁基复合氧化物的生物炭对Pb(Ⅱ)的吸附作用[D]. 石家庄: 河北师范大学, 2020. [31] ZHOU Y, NIE H, BRANFORD-WHITE C. Removal of Cu(II) from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid[J]. Journal of Colloid and Interfaced Science. 2009, 330(1): 29-37. [32] 胡学玉, 陈窈君, 张沙沙, 等. 磁性玉米秸秆生物炭对水体中Cd的去除作用及回收利用[J]. 农业工程学报, 2018, 34(19): 208-218. doi: 10.11975/j.issn.1002-6819.2018.19.027 [33] ZIMMERMANN A, MECABÔ A, FAGUNDS T, et al. Adsorption of Cr(VI) using Fe-crosslinked chitosan complex (Ch-Fe)[J]. Journal of Hazardous Materials, 2010, 179(1): 192-196. [34] ZHU S, KHAN M, WANG F, et al. Rapid removal of toxic metals Cu2+ and Pb2+ by amino trimethylene phosphonic acid intercalated layered double hydroxide: A combined experimental and DFT study[J]. Chemical Engineering Journal, 2019, 392: 123711. [35] ÇELEKLI A, İLGÜN G, BOZKURT H. Sorption equilibrium, kinetic, thermodynamic, and desorption studies of Reactive Red 120 on Chara contraria[J]. Chemical Engineering Journal, 2012, 191: 228-235. doi: 10.1016/j.cej.2012.03.007 [36] ZHOU X, LIU Y, ZHOU J, et al. Efficient removal of lead from aqueous solution by urea-functionalized magnetic biochar: Preparation, characterization and mechanism study[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018: 91457-467. [37] PRIYA AK, YOGESHWARAN V, RAJENDRAN S, et al. Investigation of mechanism of heavy metals (Cr6+, Pb2+& Zn2+) adsorption from aqueous medium using rice husk ash: kinetic and thermodynamic approach[J]. Chemosphere, 2022: 286131796. [38] LI T, LIU Y, PENG Q, et al. Removal of lead(II) from aqueous solution with ethylenediamine-modified yeast biomass coated with magnetic chitosan microparticles: kinetic and equilibrium modeling[J]. Chemical Engineering Journal, 2013, 214(1-13): 189-197. [39] WANG P, CAO M, WANG C, et al. Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite[J]. Applied Surface Science, 2014, 290: 116-124. doi: 10.1016/j.apsusc.2013.11.010 [40] ZHAO Y, ZHANG B, ZHANG X, et al. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions[J]. Journal of Hazardous Materials, 2010, 178(1-3): 658-664. doi: 10.1016/j.jhazmat.2010.01.136 [41] 曹玮. 磁性生物炭去除废水中Pb2+、Cd2+的效果及机制初探[D]. 长沙: 中南林业科技大学, 2016. [42] SUN J, LIAN F, LIU Z, et al. Biochars derived from various crop straws: Characterization and Cd(II) removal potential[J]. Ecotoxicology and Environmental Safety, 2014, 106: 226-231. doi: 10.1016/j.ecoenv.2014.04.042 [43] 周守勇, 赵宜江, 薛爱莲, 等. 盐泥吸附剂对直接染料的平衡吸附行为和热力学性质研究[J]. 环境工程学报, 2009, 3(8): 1414-1418. [44] HO S, CHEN Y, YANG Z, et al. High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge[J]. Bioresource Technology, 2017, 246: 142-149. doi: 10.1016/j.biortech.2017.08.025 [45] DONG J, SHEN L, SHAN S, et al. Optimizing magnetic functionalization conditions for efficient preparation of magnetic biochar and adsorption of Pb(II) from aqueous solution[J]. Science of the Total Environment, 2022: 806151442. [46] 刘国成. 生物炭对水体和土壤环境中重金属铅的固持[D]. 青岛: 中国海洋大学, 2014. [47] 王棋, 王斌伟, 谈广才, 等. 生物炭对Cu(II)、Pb(II)、Ni(II)和Cd(II)的单一及竞争吸附研究[J]. 北京大学学报(自然科学版), 2017, 53(6): 1122-1132. [48] ZAHEDIFAR M, SEYEDI N, SHAFIEI S, et al. Surface-modified magnetic biochar: Highly efficient adsorbents for removal of Pb(II) and Cd(II)[J]. Materials Chemistry and Physics, 2021, 271: 124860. doi: 10.1016/j.matchemphys.2021.124860 [49] MOHAN D, SINGH P, SARSWAT A, et al. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars[J]. Journal of Colloid and Interface Science, 2015, 448: 238-250. doi: 10.1016/j.jcis.2014.12.030 [50] KARUNANAYAKE A, TODD O, CROWLEY M, et al. Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir[J]. Chemical Engineering Journal, 2018, 331: 480-491. doi: 10.1016/j.cej.2017.08.124 [51] WANG S, GUO W, GAO F, et al. Lead and uranium sorptive removal from aqueous solution using magnetic and nonmagnetic fast pyrolysis rice husk biochars[J]. RSC advances, 2018, 8(24): 13205-13217. doi: 10.1039/C7RA13540H [52] HAN Z, SANI B, MROZIK W, et al. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars[J]. Water Research, 2015, 70: 394-403. doi: 10.1016/j.watres.2014.12.016 [53] JIA Y, ZHANG Y, FU J, et al. A novel magnetic biochar/MgFe-layered double hydroxides composite removing Pb2+ from aqueous solution: Isotherms, kinetics and thermodynamics[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 567: 278-287. [54] SUN C, CHEN T, HUANG Q, et al. Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO4 modification[J]. Environmental Science and Pollution Research, 2019, 26(9): 8902-8913. doi: 10.1007/s11356-019-04321-z [55] CHEN T, QUAN X, JI Z, et al. Synthesis and characterization of a novel magnetic calcium-rich nanocomposite and its remediation behaviour for As(III) and Pb(II) co-contamination in aqueous systems[J]. Science of the Total Environment, 2020, 706: 135122. doi: 10.1016/j.scitotenv.2019.135122 [56] 曹玮, 周航, 邓贵友, 等. 改性谷壳生物炭负载磁性Fe去除废水中Pb2+的效果及机制[J]. 环境工程学报, 2017, 11(3): 1437-1444. doi: 10.12030/j.cjee.201511081