[1] |
JIANG W, CHEN X, PAN B, et al. Spherical polystyrene- supported chitosan thin film of fast kinetics and high capacity for copper removal[J]. Journal of Hazardous Materials, 2014, 276: 295-301. doi: 10.1016/j.jhazmat.2014.05.032
|
[2] |
万顺利, 薛瑶, 马钊钊, 等. 茶叶基水合氧化铁吸附水中Pb(Ⅱ)的性能[J]. 环境科学, 2014, 35(10): 3782-3788.
|
[3] |
ZHOU Z, LIU Y, LIU S, et al. Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin- modified biochar[J]. Chemical Engineering Journal, 2017, 314: 223-231. doi: 10.1016/j.cej.2016.12.113
|
[4] |
ZHE X, ZHANG Q, LI X, et al. A critical review on chemical analysis of heavy metal complexes in water/wastewater and the mechanism of treatment methods[J]. Chemical Engineering Journal, 2022: 429131688.
|
[5] |
CHAI W, CHEUN J, KUMAR PS, et al. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application[J]. Journal of Cleaner Production, 2021: 296126589.
|
[6] |
ANKITA A, UPADHYAY U, SREEDHAR I, et al. A review on valorization of biomass in heavy metal removal from wastewater[J]. Journal of Water Process Engineering, 2020: 38101602.
|
[7] |
戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020, 72(6): 30-34.
|
[8] |
薛重华, 孔祥娟, 王胜, 等. 我国城镇污泥处理处置产业化现状、发展及激励政策需求[J]. 净水技术, 2018, 37(12): 33-39.
|
[9] |
刘莹. 城市污水处理厂污泥处理处置现状与技术研究[J]. 节能与环保, 2019(1): 78-79. doi: 10.3969/j.issn.1009-539X.2019.01.031
|
[10] |
谢昆, 尹静, 陈星. 中国城市污水处理工程污泥处置技术研究进展[J]. 工业水处理, 2020, 40(7): 18-23.
|
[11] |
丁文川, 杜勇, 曾晓岚, 等. 富磷污泥生物炭去除水中Pb (Ⅱ)的特性研究[J]. 环境化学, 2012, 31(9): 1375-1380.
|
[12] |
范世锁, 李雪, 胡凯, 等. 污泥基生物炭吸附重金属Cd的动力学和热力学[J]. 环境工程学报, 2016, 10(10): 5971-5977. doi: 10.12030/j.cjee.201505069
|
[13] |
IFTHIKAR J, WANG J, WANG Q, et al. Highly efficient lead distribution by magnetic sewage sludge biochar: Sorption mechanisms and bench applications[J]. Bioresource Technology, 2017, 238: 399-406. doi: 10.1016/j.biortech.2017.03.133
|
[14] |
郑凯琪, 王俊超, 刘姝彤, 等. 不同热解温度污泥生物炭对Pb2+、Cd2+的吸附特性[J]. 环境工程学报, 2016, 10(12): 7277-7282. doi: 10.12030/j.cjee.201507083
|
[15] |
YI Y, HUANG Z, LU B, et al. Magnetic biochar for environmental remediation: A review[J]. Bioresource Technology, 2020: 298122468.
|
[16] |
LI X, WANG C, ZHANG J, et al. Preparation and application of magnetic biochar in water treatment: A critical review[J]. Science of the Total Environment, 2020: 711134847.
|
[17] |
魏太庆, 王博, 艾丹, 等. 磁性生物炭的制备及其在环境修复中的研究进展[J]. 功能材料, 2021, 52(10): 10039-10047. doi: 10.3969/j.issn.1001-9731.2021.10.006
|
[18] |
赵冰, 张冉, 徐新阳. 污泥基磁性生物炭及其对水体中铜离子的吸附性能[J]. 东北大学学报(自然科学版). 2021, 42(7): 1012-1018.
|
[19] |
LI Y, ZIMMERMAN A, HE F, et al. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue[J]. Science of the Total Environment, 2020: 722137972.
|
[20] |
JOSHUA J, HUGGINS T, HUANG Y, et al. Production of magnetic biochar from waste-derived fungal biomass for phosphorus removal and recovery[J]. Journal of Cleaner Production, 2019, 224: 100-106. doi: 10.1016/j.jclepro.2019.03.120
|
[21] |
张连科, 王洋, 王维大, 等. 磁性羟基磷灰石/生物炭复合材料的制备及对Pb2+的吸附性能[J]. 环境科学学报, 2018, 38(11): 4360-4370.
|
[22] |
VAUGHN S, KENAR J, TISSERAT B, et al. Chemical and physical properties of Paulownia elongata biochar modified with oxidants for horticultural applications[J]. Industrial Crops and Products, 2017, 97: 260-267. doi: 10.1016/j.indcrop.2016.12.017
|
[23] |
李蕊宁, 王兆炜, 郭家磊, 等. 酸碱改性生物炭对水中磺胺噻唑的吸附性能研究[J]. 环境科学学报, 2017, 37(11): 4119-4128.
|
[24] |
周振扬, 杨驰浩, 尹微琴, 等. 氧化松木生物炭高效去除水中Pb及定量吸附机理[J]. 工业水处理, 2021, 41(7): 88-93.
|
[25] |
张伟, 杨柳, 蒋海燕, 等. 污泥活性炭的表征及其对Cr(Ⅵ)的吸附特性[J]. 环境工程学报, 2014, 8(4): 1439-1446.
|
[26] |
陈婷婷. 稻壳灰及改性稻壳灰吸附性能研究[D]. 南京: 南京理工大学, 2013.
|
[27] |
赵佳明. 生物质基多孔活性炭制备及其吸附Cr(VI)离子性能研究[D]. 哈尔滨: 黑龙江大学, 2021.
|
[28] |
于长江, 董心雨, 王苗, 等. 海藻酸钙/生物炭复合材料的制备及其对Pb(Ⅱ)的吸附性能和机制[J]. 环境科学, 2018, 39(8): 3719-3728.
|
[29] |
王鑫宇, 张曦, 孟海波, 等. 温度对生物炭吸附重金属特性的影响研究[J]. 中国农业科技导报, 2021, 23(2): 150-158.
|
[30] |
赵天赐. 负载铁基复合氧化物的生物炭对Pb(Ⅱ)的吸附作用[D]. 石家庄: 河北师范大学, 2020.
|
[31] |
ZHOU Y, NIE H, BRANFORD-WHITE C. Removal of Cu(II) from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid[J]. Journal of Colloid and Interfaced Science. 2009, 330(1): 29-37.
|
[32] |
胡学玉, 陈窈君, 张沙沙, 等. 磁性玉米秸秆生物炭对水体中Cd的去除作用及回收利用[J]. 农业工程学报, 2018, 34(19): 208-218. doi: 10.11975/j.issn.1002-6819.2018.19.027
|
[33] |
ZIMMERMANN A, MECABÔ A, FAGUNDS T, et al. Adsorption of Cr(VI) using Fe-crosslinked chitosan complex (Ch-Fe)[J]. Journal of Hazardous Materials, 2010, 179(1): 192-196.
|
[34] |
ZHU S, KHAN M, WANG F, et al. Rapid removal of toxic metals Cu2+ and Pb2+ by amino trimethylene phosphonic acid intercalated layered double hydroxide: A combined experimental and DFT study[J]. Chemical Engineering Journal, 2019, 392: 123711.
|
[35] |
ÇELEKLI A, İLGÜN G, BOZKURT H. Sorption equilibrium, kinetic, thermodynamic, and desorption studies of Reactive Red 120 on Chara contraria[J]. Chemical Engineering Journal, 2012, 191: 228-235. doi: 10.1016/j.cej.2012.03.007
|
[36] |
ZHOU X, LIU Y, ZHOU J, et al. Efficient removal of lead from aqueous solution by urea-functionalized magnetic biochar: Preparation, characterization and mechanism study[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018: 91457-467.
|
[37] |
PRIYA AK, YOGESHWARAN V, RAJENDRAN S, et al. Investigation of mechanism of heavy metals (Cr6+, Pb2+& Zn2+) adsorption from aqueous medium using rice husk ash: kinetic and thermodynamic approach[J]. Chemosphere, 2022: 286131796.
|
[38] |
LI T, LIU Y, PENG Q, et al. Removal of lead(II) from aqueous solution with ethylenediamine-modified yeast biomass coated with magnetic chitosan microparticles: kinetic and equilibrium modeling[J]. Chemical Engineering Journal, 2013, 214(1-13): 189-197.
|
[39] |
WANG P, CAO M, WANG C, et al. Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite[J]. Applied Surface Science, 2014, 290: 116-124. doi: 10.1016/j.apsusc.2013.11.010
|
[40] |
ZHAO Y, ZHANG B, ZHANG X, et al. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions[J]. Journal of Hazardous Materials, 2010, 178(1-3): 658-664. doi: 10.1016/j.jhazmat.2010.01.136
|
[41] |
曹玮. 磁性生物炭去除废水中Pb2+、Cd2+的效果及机制初探[D]. 长沙: 中南林业科技大学, 2016.
|
[42] |
SUN J, LIAN F, LIU Z, et al. Biochars derived from various crop straws: Characterization and Cd(II) removal potential[J]. Ecotoxicology and Environmental Safety, 2014, 106: 226-231. doi: 10.1016/j.ecoenv.2014.04.042
|
[43] |
周守勇, 赵宜江, 薛爱莲, 等. 盐泥吸附剂对直接染料的平衡吸附行为和热力学性质研究[J]. 环境工程学报, 2009, 3(8): 1414-1418.
|
[44] |
HO S, CHEN Y, YANG Z, et al. High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge[J]. Bioresource Technology, 2017, 246: 142-149. doi: 10.1016/j.biortech.2017.08.025
|
[45] |
DONG J, SHEN L, SHAN S, et al. Optimizing magnetic functionalization conditions for efficient preparation of magnetic biochar and adsorption of Pb(II) from aqueous solution[J]. Science of the Total Environment, 2022: 806151442.
|
[46] |
刘国成. 生物炭对水体和土壤环境中重金属铅的固持[D]. 青岛: 中国海洋大学, 2014.
|
[47] |
王棋, 王斌伟, 谈广才, 等. 生物炭对Cu(II)、Pb(II)、Ni(II)和Cd(II)的单一及竞争吸附研究[J]. 北京大学学报(自然科学版), 2017, 53(6): 1122-1132.
|
[48] |
ZAHEDIFAR M, SEYEDI N, SHAFIEI S, et al. Surface-modified magnetic biochar: Highly efficient adsorbents for removal of Pb(II) and Cd(II)[J]. Materials Chemistry and Physics, 2021, 271: 124860. doi: 10.1016/j.matchemphys.2021.124860
|
[49] |
MOHAN D, SINGH P, SARSWAT A, et al. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars[J]. Journal of Colloid and Interface Science, 2015, 448: 238-250. doi: 10.1016/j.jcis.2014.12.030
|
[50] |
KARUNANAYAKE A, TODD O, CROWLEY M, et al. Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir[J]. Chemical Engineering Journal, 2018, 331: 480-491. doi: 10.1016/j.cej.2017.08.124
|
[51] |
WANG S, GUO W, GAO F, et al. Lead and uranium sorptive removal from aqueous solution using magnetic and nonmagnetic fast pyrolysis rice husk biochars[J]. RSC advances, 2018, 8(24): 13205-13217. doi: 10.1039/C7RA13540H
|
[52] |
HAN Z, SANI B, MROZIK W, et al. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars[J]. Water Research, 2015, 70: 394-403. doi: 10.1016/j.watres.2014.12.016
|
[53] |
JIA Y, ZHANG Y, FU J, et al. A novel magnetic biochar/MgFe-layered double hydroxides composite removing Pb2+ from aqueous solution: Isotherms, kinetics and thermodynamics[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 567: 278-287.
|
[54] |
SUN C, CHEN T, HUANG Q, et al. Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO4 modification[J]. Environmental Science and Pollution Research, 2019, 26(9): 8902-8913. doi: 10.1007/s11356-019-04321-z
|
[55] |
CHEN T, QUAN X, JI Z, et al. Synthesis and characterization of a novel magnetic calcium-rich nanocomposite and its remediation behaviour for As(III) and Pb(II) co-contamination in aqueous systems[J]. Science of the Total Environment, 2020, 706: 135122. doi: 10.1016/j.scitotenv.2019.135122
|
[56] |
曹玮, 周航, 邓贵友, 等. 改性谷壳生物炭负载磁性Fe去除废水中Pb2+的效果及机制[J]. 环境工程学报, 2017, 11(3): 1437-1444. doi: 10.12030/j.cjee.201511081
|