-
近年来,随着人类工农业的发展,氮肥的过度使用以及化石燃料燃烧和工业污水排放,水体中硝酸盐污染日益严重[1-3]。水中高浓度硝酸盐会导致水体富营养化,破坏水生态环境,并危害人类健康[4-5]。目前已有物理、化学、生物等方法用于去除水体中的硝酸盐[6-7],但大多存在效率低、浓水需再处置、受外部环境影响大、产生有机残留物等问题。电化学还原法是一种新型高浓度硝酸盐有效去除方法[8-9],不仅可以去除水中的有机污染物,还可以将水中高浓度的硝酸盐转化为氮气或更具经济价值的氨[10-11]。此外,电还原所需的电能可以来自风能和太阳能等清洁能源,可以潜在地减少能源使用和碳足迹,并实现资源的循环利用[12-13]。
然而,硝酸盐电还原是一个复杂的多电子转移过程,涉及氮价态为+5价至-3价的多种含氮物质,其反应效率与选择性受到8电子转移过程和竞争性析氢反应(hydrogen evolution reaction, HER)的阻碍[14-15]。因此,迫切需要开发高效且高选择性的电极材料以及电场、流场相协同的电化学反应器[16-17],以提高传质效率、电荷效率和产物转化率。铜作为一种低成本的过渡金属,其电子结构可调,具有灵活的电化学活性,相比许多贵金属,铜有更好的催化硝酸盐转氨性能。因此,铜基电极在硝酸盐电还原方面得到了广泛研究[18-21]。然而,纯铜催化剂容易因为还原过程中中间产物的强吸附而快速失活。有研究[22-24]表明,将铜与贵金属或其他过渡金属合金化,可调节质子和电子的转移以及吸附在铜中心上的部分还原中间体的吸附强度,从而能减缓这些限制。
本研究通过构建电场与流场相协同的穿透式电化学反应器,以溶液穿流通过电极的方式提高电极和电解质溶液的接触面积,构造高度凝缩的传质和反应空间,强化电子传递;同时通过电化学还原制备穿透式镍铜二元金属纳米线电极,提高催化位点密度,调节中间产物吸附,提升催化效率。最后,对该体系硝酸盐电化学还原效率和体系的运行稳定性进行了评价。
铜镍纳米结构修饰多孔电极的电化学硝酸根还原
Electrochemical nitrate reduction of porous electrodes modified with Ni-Cu nanostructures
-
摘要: 利用电化学将硝酸根转化为有价值的氨是硝酸盐处置绿色、低碳的途径。本研究制备了铜镍纳米结构修饰多孔电极(Ni-Cu NW),同时构建了电场与流场相协同的穿透式电化学反应器体系。在施加-0.6 V (vs. RHE)电位条件下,该体系氨法拉第效率可达到(84.35±3.63)%,而泡沫Cu电极的法拉第效率仅为(17.2±0.63)%。在定制的穿透式反应器中,Ni-Cu NW电极在−0.6 V、300 r·min−1转速条件下对1 400 mg·L−1 NO3--N 溶液电解,100 min后硝酸盐的转化率接近100%,氨选择性为85.5%。电子自旋共振能谱(ESR)和Hads淬灭实验证明除了电极直接还原硝酸盐,体系中的Hads可帮助进一步还原硝酸盐。以50 mA·cm−2恒电流密度运行24 h,运行前后电极的硝酸盐还原性能未产生明显变化。Abstract: Electrochemical conversion of nitrate ions into valuable ammonia is a green and low carbon approach for nitrate disposal. A porous electrode modified with Ni-Cu nanostructure was prepared and the according flow-through electrochemical reactor system was constructed with the synergy of electric field and flow field. At −0.6V(vs. RHE), the Faraday efficiency of ammonia reached (84.35±3.63)%, whereas that of foam Cu electrode was only (17.2±0.63)%. By using the flow-through reactor, the Ni-Cu NW electrode electrolyzed 1 400 mg·L−1 NO3--N at the potential of −0.6 V, a stirring rate of 300 r·min−1, After 100 min treatment, the results exhibited that the conversion rate of nitrate and the selectivity of ammonia was 100% and 85.5%, respectively. Electron spin resonance spectroscopy (ESR) and Hads quenching experiments showed that in addition to direct reduction of nitrate by electrode, the produced Hads could further facilitate nitrate reduction. With a current of 50 mA·cm−2 for 24 hours, no obvious change in nitrate reduction performance could occur before and after running.
-
Key words:
- electric reduction /
- nitrate /
- Cu foam /
- copper-nickel alloy
-
-
[1] HAN D, CURRELL M J, CAO G. Deep challenges for China's war on water pollution[J]. Environmental Pollution, 2016, 218: 1222-1233. doi: 10.1016/j.envpol.2016.08.078 [2] 张鑫, 张妍, 毕直磊, 等. 中国地表水硝酸盐分布及其来源分析[J]. 环境科学, 2020, 41(4): 1594-1606. doi: 10.13227/j.hjkx.201909078 [3] GRUBER N, GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451: 293-296. doi: 10.1038/nature06592 [4] SCHULLEHNER J, HANSEN B, THYGESEN M, et al. Nitrate in drinking water and colorectal cancer risk: A nationwide population‐based cohort study[J]. International Journal of Cancer, 2018, 143: 73-79. doi: 10.1002/ijc.31306 [5] EBDRUP N H, SCHULLEHNER J, KNUDSEN U B, et al. Drinking water nitrate and risk of pregnancy loss: A nationwide cohort study[J]. Environmental Health, 2022, 21(1): 87. doi: 10.1186/s12940-022-00897-1 [6] YOU Q G, WANG J H, QI G X, et al. Anammox and partial denitrification coupling: A review[J]. RSC Advances, 2020, 10: 12554-12572. doi: 10.1039/D0RA00001A [7] BARRABéS N, Sá J. Catalytic nitrate removal from water, past, present and future perspectives[J]. Applied Catalysis B:Environmental, 2011, 104: 1-5. doi: 10.1016/j.apcatb.2011.03.011 [8] CHAUHAN R, SRIVASTAVA V C. Electrochemical denitrification of highly contaminated actual nitrate wastewater by Ti/RuO2 anode and iron cathode[J]. Chemical Engineering Journal, 2020, 386: 122065. doi: 10.1016/j.cej.2019.122065 [9] DUCA M, KOPER M T M. Powering denitrification: The perspectives of electrocatalytic nitrate reduction[J]. Energy & Environmental Science, 2012, 5: 9726-9742. [10] GAO J, SHI N, LI Y, et al. Electrocatalytic upcycling of nitrate wastewater into an ammonia fertilizer via an electrified membrane[J]. Environmental Science & Technology, 2022, 56: 11602-11613. [11] CHEN F Y, WU Z Y, GUPTA S, et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst[J]. Nature Nanotechnology, 2022, 17: 759-767. doi: 10.1038/s41565-022-01121-4 [12] GHIMIRE U, SARPONG G, GUDE V G. Transitioning wastewater treatment plants toward circular economy and energy sustainability[J]. ACS Omega, 2021, 6: 11794-11803. doi: 10.1021/acsomega.0c05827 [13] CHEN J G, CROOKS R M, SEEFELDT L C, et al. Beyond fossil fuel–driven nitrogen transformations[J]. Science, 2018, 360: 1-7. [14] CHEN G F, YUAN Y, JIANG H, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst[J]. Nature Energy, 2020, 5: 605-613. doi: 10.1038/s41560-020-0654-1 [15] GARCIA-SEGURA S, LANZARINI-LOPES M, HRISTOVSKI K, et al. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications[J]. Applied Catalysis B:Environmental, 2018, 236: 546-568. doi: 10.1016/j.apcatb.2018.05.041 [16] PERRY S C, PONCE DE LEóN C, WALSH F C. Review: The design, performance and continuing development of electrochemical reactors forclean electrosynthesis[J]. Journal of the Electrochemical Society, 2020, 167: 155525. doi: 10.1149/1945-7111/abc58e [17] MOUSSET E, DIONYSIOU D D. Photoelectrochemical reactors for treatment of water and wastewater: A review[J]. Environmental Chemistry Letters, 2020, 18: 1301-1318. doi: 10.1007/s10311-020-01014-9 [18] WANG X, ZHU M, ZENG G, et al. A three-dimensional Cu nanobelt cathode for highly efficient electrocatalytic nitrate reduction[J]. Nanoscale, 2020, 12: 9385-9391. doi: 10.1039/C9NR10743F [19] WU K, SUN C, WANG Z, et al. Surface reconstruction on uniform Cu nanodisks boosted electrochemical nitrate reduction to ammonia[J]. ACS Materials Letters, 2022, 4: 650-656. doi: 10.1021/acsmaterialslett.2c00149 [20] XUE Y, YU Q, MA Q, et al. Electrocatalytic hydrogenation boosts reduction of nitrate to ammonia over single-atom Cu with Cu(I)-N3C1 sites[J]. Environmental Science & Technology, 2022, 56: 14797-14807. [21] WANG Y, ZHOU W, JIA R, et al. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia[J]. Angewandte Chemie International Edition, 2020, 59: 5350-5354. doi: 10.1002/anie.201915992 [22] WANG Y, XU A, WANG Z, et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption[J]. Journal of the American Chemical Society, 2020, 142: 5702-5708. doi: 10.1021/jacs.9b13347 [23] MATTAROZZI L, CATTARIN S, COMISSO N, et al. Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes[J]. Electrochimica Acta, 2013, 89: 488-496. doi: 10.1016/j.electacta.2012.11.074 [24] MATTAROZZI L, CATTARIN S, COMISSO N, et al. Hydrogen evolution assisted electrodeposition of porous Cu-Ni alloy electrodes and their use for nitrate reduction in alkali[J]. Electrochimica Acta, 2014, 337-344. [25] ROSCA V, DUCA M, DE GROOT M T, et al. Nitrogen cycle electrocatalysis[J]. Chemical Reviews, 2009, 109: 2209-2244. doi: 10.1021/cr8003696 [26] FAN K, XIE W, LI J, et al. Active hydrogen boosts electrochemical nitrate reduction to ammonia[J]. Nature Communications, 2022, 13: 7958. doi: 10.1038/s41467-022-35664-w