小清河(济南段)支流内分泌干扰物综合激素效应分布特征研究

许燕, 孙韶华, 逯南南, 孙莉, 赵清华, 贾瑞宝. 小清河(济南段)支流内分泌干扰物综合激素效应分布特征研究[J]. 生态毒理学报, 2021, 16(2): 178-186. doi: 10.7524/AJE.1673-5897.20200115001
引用本文: 许燕, 孙韶华, 逯南南, 孙莉, 赵清华, 贾瑞宝. 小清河(济南段)支流内分泌干扰物综合激素效应分布特征研究[J]. 生态毒理学报, 2021, 16(2): 178-186. doi: 10.7524/AJE.1673-5897.20200115001
Xu Yan, Sun Shaohua, Lu Nannan, Sun Li, Zhao Qinghua, Jia Ruibao. Study on Distribution Characteristics of Comprehensive Hormonal Effect of Endocrine Disrupting Chemicals in Branch of Xiaoqing River (Jinan Section)[J]. Asian Journal of Ecotoxicology, 2021, 16(2): 178-186. doi: 10.7524/AJE.1673-5897.20200115001
Citation: Xu Yan, Sun Shaohua, Lu Nannan, Sun Li, Zhao Qinghua, Jia Ruibao. Study on Distribution Characteristics of Comprehensive Hormonal Effect of Endocrine Disrupting Chemicals in Branch of Xiaoqing River (Jinan Section)[J]. Asian Journal of Ecotoxicology, 2021, 16(2): 178-186. doi: 10.7524/AJE.1673-5897.20200115001

小清河(济南段)支流内分泌干扰物综合激素效应分布特征研究

    作者简介: 许燕(1986-),女,硕士,工程师,研究方向为水环境生态毒理学,E-mail:xu_yan_0318@163.com
    通讯作者: 贾瑞宝, E-mail: jiaruibao68@126.com
  • 基金项目:

    国家水体污染控制与治理科技重大专项(2017ZX07502003-06);山东省泰山学者建设工程专项(ts201712084);山东省中央引导地方科技发展资金项目“基于风险防控的黄河下游湖库水系新兴污染物环境归趋与控制机理”(YDZX20203700001642);山东省重点研发计划“水源地和供水安全综合防控与流域水环境容量提升关键技术研究与示范”(2020CXGC011406)

  • 中图分类号: X171.5

Study on Distribution Characteristics of Comprehensive Hormonal Effect of Endocrine Disrupting Chemicals in Branch of Xiaoqing River (Jinan Section)

    Corresponding author: Jia Ruibao, jiaruibao68@126.com
  • Fund Project:
  • 摘要: 应用化学诱导荧光素酶表达基因法(chemical activated luciferase gene expression,CALUX)调研了小清河(济南段)主要支流的多种内分泌干扰物综合激素效应,明确了4类内分泌干扰物的含量水平及分布特征。结果表明,调研河流的二噁英类、雌激素类和肾上腺皮质激素类的年平均毒性当量浓度范围为0.020~0.040 ng 2,3,7,8-TCDD TEQ·L-1、0.007~0.050 ng E2-eq·L-1和1.8~9.6 ng Dex-eq·L-1。二噁英类和雌激素类的含量水平相对较低,雄激素类内分泌干扰物的污染风险较低,肾上腺皮质激素类是其内分泌干扰物污染的最大贡献者。二噁英类检出水平无明显的季节性和区域性差别,雌激素类季节性变化明显,春、冬两季检出率高,肾上腺皮质激素类分布的季节性分布不明显,但区域性分布规律明显,农业区支流的检出频次和含量水平明显低于居民区和商业区支流。
  • 加载中
  • Damstra T, Barlow S, Bergman A, et al. Global assessment of the state-of-the-science of endocrine disruptors[R]. Geneva:World Health Organization, 2002
    Bergman Å, Heindel J, Jobling S, et al. State-of-the-science of endocrine disrupting chemicals, 2012[J]. Toxicology Letters, 2012, 211(Suppl.1):S3
    He W, Qin N, Kong X Z, et al. Spatio-temporal distributions and the ecological and health risks of phthalate esters (PAEs) in the surface water of a large, shallow Chinese lake[J]. Science of the Total Environment, 2013, 461-462:672-680
    Yang B, Ying G G, Zhao J L, et al. Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate(Ⅵ) treatment of secondary wastewater effluents[J]. Water Research, 2012, 46(7):2194-2204
    Kwon M S, Lee H J, Kim S H, et al. Development of ERE/DRE-dual CALUX bioassays system for monitoring estrogen- and dioxin-like persistent organic pollutants[J]. Biotechnology and Bioprocess Engineering, 2012, 17(3):634-642
    Zhang T T, Yu G, Wang B, et al. Bioanalytical characterization of dioxin-like activity in sewage sludge from Beijing, China[J]. Chemosphere, 2009, 75(5):649-653
    Brown D, Kishimoto Y, Ikeno O, et al. Validation study for the use of the dioxin responsive CALUX TM assay for analysis of Japanese ash and soil samples[J]. Organohal Compounds, 2000, 45:200-203
    Koppen G, Covaci A, van Cleuvenbergen R, et al. Comparison of CALUX-TEQ values with PCB and PCDD/F measurements in human serum of the Flanders Environmental and Health Study (FLEHS)[J]. Toxicology Letters, 2001, 123(1):59-67
    Schroijen C, Wouwe N V, Sanctorum H, et al. CALUX analysis in small amounts of human serum[J]. Organohal Compounds, 2006, 68:2511-2514
    van der Linden S C, Heringa M B, Man H Y, et al. Detection of multiple hormonal activities in wastewater effluents and surface water, using a panel of steroid receptor CALUX bioassays[J]. Environmental Science & Technology, 2008, 42(15):5814-5820
    European Commission. Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council[R]. Aberdeen:European Commission, 2015
    Elskens M, Pussemier L, Dumortier P, et al. Dioxin levels in fertilizers from Belgium:Determination and evaluation of the potential impact on soil contamination[J]. Science of the Total Environment, 2013, 454-455:366-372
    Du Y Z, Chen T, Lu S Y, et al. Comparative analysis of PCDD/Fs in soil around waste incineration plants in China using CALUX bioassay and HRGC/HRMS[J]. Journal of Hazardous Materials, 2011, 192(3):1729-1738
    Sato M, Takigami H, Hayakawa K, et al. Water-quality monitoring technique for dioxins during dredging using on-site solid phase extraction with graphitic carbon and analysis with DR-CALUX[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2010, 45(7):867-874
    Addeck A, Croes K, van Langenhove K, et al. Time-integrated monitoring of dioxin-like polychlorinated biphenyls (dl-PCBs) in aquatic environments using the ceramic toximeter and the CALUX bioassay[J]. Talanta, 2014, 120:413-418
    Jung J H, Hong S H, Yim U H, et al. Multiple in vitro bioassay approach in sediment toxicity evaluation:Masan Bay, Korea[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 89(1):32-37
    Vandermarken T, Croes K, van Langenhove K, et al. Endocrine activity in an urban river system and the biodegradation of estrogen-like endocrine disrupting chemicals through a bio-analytical approach using DRE- and ERE-CALUX bioassays[J]. Chemosphere, 2018, 201:540-549
    Müller M E, Escher B I, Schwientek M, et al. Combining in vitro reporter gene bioassays with chemical analysis to assess changes in the water quality along the Ammer River, Southwestern Germany[J]. Environmental Sciences Europe, 2018, 30(1):20
    Shi P, Zhou S C, Xiao H X, et al. Toxicological and chemical insights into representative source and drinking water in Eastern China[J]. Environmental Pollution, 2018, 233:35-44
    黄楚琴, 蔡文泳, 刘寒英, 等. 基于酵母报道基因系统检测珠江三角洲水域二噁英污染物的分布蓄积特征[J]. 应用与环境生物学报, 2014, 20(4):690-696

    Huang C Q, Cai W Y, Liu H Y, et al. Investigating distribution and accumulation of dioxin-like pollutants with yeast genetic reporter system in rivers of the Pearl River Delta[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(4):690-696(in Chinese)

    Scott P D, Bartkow M, Blockwell S J, et al. An assessment of endocrine activity in Australian rivers using chemical and in vitro analyses[J]. Environmental Science and Pollution Research International, 2014, 21(22):12951-12967
    Scott P D, Coleman H M, Khan S, et al. Histopathology, vitellogenin and chemical body burden in mosquitofish (Gambusia holbrooki) sampled from six river sites receiving a gradient of stressors[J]. Science of the Total Environment, 2018, 616-617:1638-1648
    Vethaak A D, Lahr J, Schrap S M, et al. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands[J]. Chemosphere, 2005, 59(4):511-524
    Vermeirssen E L, Burki R, Joris C, et al. Characterization of the estrogenicity of Swiss midland rivers using a recombinant yeast bioassay and plasma vitellogenin concentrations in feral male brown trout[J]. Environmental Toxicology and Chemistry, 2005, 24(9):2226-2233
    Polar J A. The fate of pharmaceuticals after wastewater treatment[J]. Flordia Water Resources, 2007, 7:26-31
    Snyder S A, Westerhoff P, Yoon Y, et al. Pharmaceuticals, personal care products, and endocrine disruptors in water:Implications for the water industry[J]. Environmental Engineering Science, 2003, 20(5):449-469
    Diamanti-Kandarakis E, Bourguignon J P, Giudice L C, et al. Endocrine-disrupting chemicals:An endocrine society scientific statement[J]. Endocrine Reviews, 2009, 30(4):293-342
    Murray K E, Thomas S M, Bodour A A. Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment[J]. Environmental Pollution, 2010, 158(12):3462-3471
    Macikova P, Groh K J, Ammann A A, et al. Endocrine disrupting compounds affecting corticosteroid signaling pathways in Czech and Swiss waters:Potential impact on fish[J]. Environmental Science & Technology, 2014, 48(21):12902-12911
    Schriks M, van der Linden S C, Stoks P G M, et al. Occurrence of glucocorticogenic activity in various surface waters in The Netherlands[J]. Chemosphere, 2013, 93(2):450-454
    Chang H, Hu J Y, Shao B. Occurrence of natural and synthetic glucocorticoids in sewage treatment plants and receiving river waters[J]. Environmental Science & Technology, 2007, 41(10):3462-3468
    Tölgyesi A, Verebey Z, Sharma V K, et al. Simultaneous determination of corticosteroids, androgens, and progesterone in river water by liquid chromatography-tandem mass spectrometry[J]. Chemosphere, 2010, 78(8):972-979
    Umberger E J. Products marketed to promote growth in food-producing animals:Steroid and hormone products[J]. Toxicology, 1975, 3(1):3-21
    贾瑞宝, 孙韶华, 逯南南, 等. 城镇排水内分泌干扰物综合毒性效应的CALUX检测方法[J]. 中国给水排水, 2018, 34(18):109-113

    Jia R B, Sun S H, Lu N N, et al. Detection of comprehensive toxicity effect of endocrine disruptors in urban drainage by CALUX bioassay[J]. China Water & Wastewater, 2018, 34(18):109-113(in Chinese)

    贾瑞宝, 孙韶华, 张诺, 等. 水库型水源水中污染物综合激素效应及工艺去除特性研究[J]. 给水排水, 2016, 52(3):26-30

    Jia R B, Sun S H, Zhang N, et al. Study on comprehensive toxicity effect and removal process of pollutants in reservoir water resource[J]. Water & Wastewater Engineering, 2016, 52(3):26-30(in Chinese)

  • 加载中
计量
  • 文章访问数:  2188
  • HTML全文浏览数:  2188
  • PDF下载数:  102
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-01-15
许燕, 孙韶华, 逯南南, 孙莉, 赵清华, 贾瑞宝. 小清河(济南段)支流内分泌干扰物综合激素效应分布特征研究[J]. 生态毒理学报, 2021, 16(2): 178-186. doi: 10.7524/AJE.1673-5897.20200115001
引用本文: 许燕, 孙韶华, 逯南南, 孙莉, 赵清华, 贾瑞宝. 小清河(济南段)支流内分泌干扰物综合激素效应分布特征研究[J]. 生态毒理学报, 2021, 16(2): 178-186. doi: 10.7524/AJE.1673-5897.20200115001
Xu Yan, Sun Shaohua, Lu Nannan, Sun Li, Zhao Qinghua, Jia Ruibao. Study on Distribution Characteristics of Comprehensive Hormonal Effect of Endocrine Disrupting Chemicals in Branch of Xiaoqing River (Jinan Section)[J]. Asian Journal of Ecotoxicology, 2021, 16(2): 178-186. doi: 10.7524/AJE.1673-5897.20200115001
Citation: Xu Yan, Sun Shaohua, Lu Nannan, Sun Li, Zhao Qinghua, Jia Ruibao. Study on Distribution Characteristics of Comprehensive Hormonal Effect of Endocrine Disrupting Chemicals in Branch of Xiaoqing River (Jinan Section)[J]. Asian Journal of Ecotoxicology, 2021, 16(2): 178-186. doi: 10.7524/AJE.1673-5897.20200115001

小清河(济南段)支流内分泌干扰物综合激素效应分布特征研究

    通讯作者: 贾瑞宝, E-mail: jiaruibao68@126.com
    作者简介: 许燕(1986-),女,硕士,工程师,研究方向为水环境生态毒理学,E-mail:xu_yan_0318@163.com
  • 山东省城市供排水水质监测中心, 济南 250100
基金项目:

国家水体污染控制与治理科技重大专项(2017ZX07502003-06);山东省泰山学者建设工程专项(ts201712084);山东省中央引导地方科技发展资金项目“基于风险防控的黄河下游湖库水系新兴污染物环境归趋与控制机理”(YDZX20203700001642);山东省重点研发计划“水源地和供水安全综合防控与流域水环境容量提升关键技术研究与示范”(2020CXGC011406)

摘要: 应用化学诱导荧光素酶表达基因法(chemical activated luciferase gene expression,CALUX)调研了小清河(济南段)主要支流的多种内分泌干扰物综合激素效应,明确了4类内分泌干扰物的含量水平及分布特征。结果表明,调研河流的二噁英类、雌激素类和肾上腺皮质激素类的年平均毒性当量浓度范围为0.020~0.040 ng 2,3,7,8-TCDD TEQ·L-1、0.007~0.050 ng E2-eq·L-1和1.8~9.6 ng Dex-eq·L-1。二噁英类和雌激素类的含量水平相对较低,雄激素类内分泌干扰物的污染风险较低,肾上腺皮质激素类是其内分泌干扰物污染的最大贡献者。二噁英类检出水平无明显的季节性和区域性差别,雌激素类季节性变化明显,春、冬两季检出率高,肾上腺皮质激素类分布的季节性分布不明显,但区域性分布规律明显,农业区支流的检出频次和含量水平明显低于居民区和商业区支流。

English Abstract

参考文献 (35)

返回顶部

目录

/

返回文章
返回