畜牧场土壤中重金属与抗生素抗性基因的分布规律研究
Distribution of Heavy Metals and Antibiotic Resistance Genes in the Soil of Livestock Farms
-
摘要: 为研究畜牧场土壤中重金属和抗生素抗性基因(ARGs)的空间分布特点,揭示二者之间的相关性,为后续特色黑土的修复治理提供基础理论依据。结合GIS优化布点,在黑龙江省大庆市杜尔伯特蒙古族自治县某畜牧场园区分别采集内部10 cm和50 cm深度的土壤。采用原子吸收光谱仪和原子荧光分光光度计检测8种重金属含量,用单因子污染指数法和内梅罗综合污染指数法对重金属进行污染评价;通过实时荧光定量PCR技术检测土壤中的28种ARGs,运用Pearson分析重金属与ARGs的相关性,同时对二者之间的相似性进行聚类分析。10 cm和50 cm土壤的单因子污染指数分析显示,As均属于重度污染等级(Pi>3),其他7种元素属于安全等级(Pi ≤ 1),内梅罗综合污染指数均属于重度污染等级(P综>3)。28种ARGs污染分布差异较大,除β-内酰胺类ARGs随土壤深度的增加污染程度呈增大的趋势,其余都呈减小的趋势;50 cm土层中blaTEM的相对丰度较高,约为0.65拷贝数/16S rRNA基因拷贝数。相关性分析表明,杜蒙园区土壤中sul2与tetX、tetR、tetW、tetC和tet34分别与重金属Cr、As、Pb和Cd存在一定程度的相关性(P<0.05);重金属污染程度较重的As和Cr对ARGs的选择压力相似。畜牧场中重金属污染严重,ARGs污染水平亟待推行评价标准,为后续恢复受污染的特色黑土的生态功能提供依据。Abstract: In order to study the spatial distribution characteristics of heavy metals and antibiotic resistance genes (ARGs) in the soil of livestock farms, reveal whether there is a correlation between the heavy metal and ARGs, and provide the basic theoretical basis for the subsequent restoration and treatment of characteristic black soil. GIS was used to optimize the sampling point design, soil samples both in 10 cm-depth and 50 cm-depth layer were collected in Daqing Duerbert Mongolian Autonomous County, Heilongjiang Province. The contents of eight heavy metals were detected by atomic absorption spectrometer and atomic fluorescence photometer, and the pollution of heavy metals was evaluated by single factor pollution index and Nemero comprehensive pollution index. Twenty-eight antibiotic resistance genes in soil were detected by real-time fluorescence quantitative PCR, Pearson index was used to analyze the correlation between heavy metals and ARGs, and the similarity between them was analyzed by clustering. In the single-factor pollution index of 10 cm-depth and 50 cm-depth soil, As elements all belong to the heavy pollution level (Pi>3), the other 7 elements belong to the safety level (Pi ≤ 1), and the Nemerow comprehensive pollution index of 10 cm and 50 cm-depth soil all belonged to the heavy pollution level (Pcomprehensive>3). The distribution of 28 antibiotic resistance genes was significantly different, with the exception of β-lactams ARGs showing an increasing trend with the increase of soil depth, and all the others showed a decreasing trend with the increase of soil depth. The relative abundance of blaTEM in the 50 cm soil layer was high, approximately 0.65 copies of genes/copies of 16S rRNA genes. Correlation analysis showed that sul2 and tetX, tetR, tetW, tetC and tet34 were respectively correlated with heavy metals Cr, As, Pb and Cd to a certain extent in the soil of livestock farms (P<0.05). The selective pressure of As and Cr was similar to that of ARGs. Heavy metal pollution is serious in livestock farms, and the standard of ARGs pollution guidelines urgently need to be evaluated. This study can provide reference for restoring the ecological function of polluted black soil in the future.
-
Key words:
- heavy metal /
- antibiotic resistance genes /
- black soil /
- distribution characteristics
-
-
Pruden A, Pei R T, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450 Ventola C L. The antibiotic resistance crisis:Part 1:Causes and threats[J]. P & T:A Peer-Reviewed Journal for Formulary Management, 2015, 40(4):277-283 Qiao M, Ying G G, Singer A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment International, 2018, 110:160-172 Qian X, Sun W, Gu J, et al. Variable effects of oxytetracycline on antibiotic resistance gene abundance and the bacterial community during aerobic composting of cow manure[J]. Journal of Hazardous Materials, 2016, 315:61-69 Zhang J Y, Sui Q W, Tong J, et al. Soil types influence the fate of antibiotic-resistant bacteria and antibiotic resistance genes following the land application of sludge composts[J]. Environment International, 2018, 118:34-43 Duan M L, Gu J, Wang X J, et al. Factors that affect the occurrence and distribution of antibiotic resistance genes in soils from livestock and poultry farms[J]. Ecotoxicology and Environmental Safety, 2019, 180:114-122 Berendonk T U, Manaia C M, Merlin C, et al. Tackling antibiotic resistance:The environmental framework[J]. Nature Reviews Microbiology, 2015, 13(5):310-317 Pal C, Asiani K, Arya S, et al. Metal resistance and its association with antibiotic resistance[J]. Advances in Microbial Physiology, 2017, 70:261-313 Song J X, Rensing C, Holm P E, et al. Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil[J]. Environmental Science & Technology, 2017, 51(5):3040-3047 Pal C, Bengtsson-Palme J, Kristiansson E, et al. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential[J]. BMC Genomics, 2015, 16:964 Yazdankhah S, Rudi K, Bernhoft A. Zinc and copper in animal feed-Development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin[J]. Microbial Ecology in Health and Disease, 2014, 25:1-7 Ji X L, Shen Q H, Liu F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China[J]. Journal of Hazardous Materials, 2012, 235-236:178-185 Wang R, Chen M X, Feng F, et al. Effects of chlortetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion[J]. Bioresource Technology, 2017, 238:57-69 Knapp C W, Callan A C, Aitken B, et al. Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia[J]. Environmental Science and Pollution Research International, 2017, 24(3):2484-2494 Hu H W, Wang J T, Li J, et al. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils[J]. Environmental Microbiology, 2016, 18(11):3896-3909 Hu H W, Wang J T, Li J, et al. Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils[J]. Environmental Science & Technology, 2017, 51(2):790-800 Mihailović A, Budinski-Petković L, Popov S, et al. Spatial distribution of metals in urban soil of Novi Sad, Serbia:GIS based approach[J]. Journal of Geochemical Exploration, 2015, 150:104-114 Hou D Y, O'Connor D, Nathanail P, et al. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination:A critical review[J]. Environmental Pollution, 2017, 231(Pt 1):1188-1200 中华人民共和国农业部. 土壤检测第2部分:土壤pH的测定:NY/T 1121.2-2006[S]. 北京:中国标准出版社, 2006 中华人民共和国生态环境部. 土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法:HJ 491-2019[S]. 北京:中国环境科学出版社, 2019 中华人民共和国国家环境保护总局. 土壤质量铅、镉的测定石墨炉原子吸收分光光度法:GB/T 17141-1997[S]. 北京:中华人民共和国国家环境保护总局, 1997 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 土壤质量总汞、总砷、总铅的测定原子荧光法第1部分:土壤中总汞的测定:GB/T 22105.1-2008[S]. 北京:中国标准出版社, 2008 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 土壤质量总汞、总砷、总铅的测定原子荧光法第2部分:土壤中总砷的测定:GB/T 22105.2-2008[S]. 北京:中国标准出版社, 2008 Zhao Y, Su J Q, An X L, et al. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut[J]. Science of the Total Environment, 2018, 621:1224-1232 Zhu Y G, Zhao Y, Li B, et al. Continental-scale pollution of estuaries with antibiotic resistance genes[J]. Nature Microbiology, 2017, 2:16270 刘硕, 吴泉源, 曹学江, 等. 龙口煤矿区土壤重金属污染评价与空间分布特征[J]. 环境科学, 2016, 37(1):270-279 Liu S, Wu Q Y, Cao X J, et al. Pollution assessment and spatial distribution characteristics of heavy metals in soils of coal mining area in Longkou City[J]. Environmental Science, 2016, 37(1):270-279(in Chinese)
张连科, 李海鹏, 黄学敏, 等. 包头某铝厂周边土壤重金属的空间分布及来源解析[J]. 环境科学, 2016, 37(3):1139-1146 Zhang L K, Li H P, Huang X M, et al. Soil heavy metal spatial distribution and source analysis around an aluminum plant in Baotou[J]. Environmental Science, 2016, 37(3):1139-1146(in Chinese)
中国环境监测总站. 中国土壤元素背景值[M]. 北京:中国环境科学出版社, 1990:1-500 Wilding L P. Spatial variability:Its documentation, accommodation and implication to soil survey[M]//Nielsen D R, Bouma J. (Eds). Soil Spatial Variability. Wageningen:Pudoc Scientific Publishers, 1985:166-193 茹淑华, 苏德纯, 张永志, 等. 河北省集约化养殖场畜禽粪便中重金属含量及变化特征[J]. 农业资源与环境学报, 2016, 33(6):533-539 Ru S H, Su D C, Zhang Y Z, et al. Contents and characteristics of heavy metals in the livestock and poultry manure from the large-scale farms in Hebei Province, China[J]. Journal of Agricultural Resources and Environment, 2016, 33(6):533-539(in Chinese)
阮心玲, 张甘霖, 赵玉国, 等. 基于高密度采样的土壤重金属分布特征及迁移速率[J]. 环境科学, 2006, 27(5):1020-1025 Ruan X L, Zhang G L, Zhao Y G, et al. Distribution and migration of heavy metals in soil profiles by high-resolution sampling[J]. Environmental Science, 2006, 27(5):1020-1025(in Chinese)
梁玉峰, 谭长银, 曹雪莹, 等. 不同土地利用方式下土壤养分和重金属元素垂直分布特征[J]. 环境工程学报, 2018, 12(6):1791-1799 Liang Y F, Tan C Y, Cao X Y, et al. Vertical distribution of soil nutrient and heavy metals in soil under different land use[J]. Chinese Journal of Environmental Engineering, 2018, 12(6):1791-1799(in Chinese)
刘娟, 王津, 陈永亨, 等. 云浮硫铁矿区冲积土壤重金属垂直分布特征的研究[J]. 环境与健康杂志, 2013, 30(7):641-642 李小刚, 占长林, 王路, 等. 大冶铁矿尾矿库区土壤重金属垂直分布特征及污染评价[J]. 湖北理工学院学报, 2017, 33(3):28-33 Li X G, Zhan C L, Wang L, et al. Distribution characteristic and assessment of heavy metal pollution in soils of Daye iron ore tailings[J]. Journal of Hubei Polytechnic University, 2017, 33(3):28-33(in Chinese)
姚娜, 张萌, 刘足根, 等. 冶炼行业大气排放对周边土壤重金属污染的贡献率研究[J]. 江西科学, 2019, 37(5):750-754 Yao N, Zhang M, Liu Z G, et al. Research on the contribution of heavy metals emission from the smelting industry to the surrounding soils[J]. Jiangxi Science, 2019, 37(5):750-754(in Chinese)
侯沁言, 张世熔, 马小杰, 等. 基于GIS的凯江流域农田重金属污染评价研究[J]. 农业环境科学学报, 2019, 38(7):1514-1522 Hou Q Y, Zhang S R, Ma X J, et al. Evaluation of heavy metal pollution in farmland soil of the Kaijiang watershed based on GIS[J]. Journal of Agro-Environment Science, 2019, 38(7):1514-1522(in Chinese)
赵祥, 王金花, 朱鲁生. 设施菜地土壤中抗生素及抗性基因多样性及丰度的研究[C]//中国土壤学会. 中国土壤学会土壤环境专业委员会第二十次会议暨农田土壤污染与修复研讨会论文集. 合肥:中国土壤学会, 2018:208-209 张兰河, 王佳佳, 哈雪姣, 等. 北京地区菜田土壤抗生素抗性基因的分布特征[J]. 环境科学, 2016, 37(11):4395-4401 Zhang L H, Wang J J, Ha X J, et al. Distribution characteristics of antibiotic resistance genes in vegetable soils in Beijing[J]. Environmental Science, 2016, 37(11):4395-4401(in Chinese)
张海丰, 史明明, 孙艳梅, 等. 磺胺甲噁唑污染土壤中微生物群落结构与抗生素抗性基因的分布特征[J]. 环境科学, 2019, 40(10):4678-4684 Zhang H F, Shi M M, Sun Y M, et al. Microbial community structure and the distribution of antibiotic resistance genes in soil contaminated by sulfamethoxazole[J]. Environmental Science, 2019, 40(10):4678-4684(in Chinese)
孙佳丽, 刘怡, 郑英帅, 等. Ni(Ⅳ)配合物-鲁米诺化学发光新体系测定饲料中的磺胺脒[J]. 分析测试学报, 2015, 34(10):1200-1203 Sun J L, Liu Y, Zheng Y S, et al. Determination of sulfaguanidine in feed sample by Ni(Ⅳ) complex-luminol chemiluminescence system coupled with flow-injection[J]. Journal of Instrumental Analysis, 2015, 34(10):1200-1203(in Chinese)
李亚飞, 许燕滨, 凌嘉茵, 等. 头孢噻肟钠与重金属对AmpC β-内酰胺酶类抗性基因转移的影响[J]. 环境科学学报, 2017, 37(9):3327-3334 Li Y F, Xu Y B, Ling J Y, et al. Impacts of cefotaxime sodium and heavy metals on AmpC β-lactamase resistance gene transfer[J]. Acta Scientiae Circumstantiae, 2017, 37(9):3327-3334(in Chinese)
袁晓春. 多重胶体金免疫层析法检测乳品中β-内酰胺类、四环素类、头孢氨苄抗生素残留[J]. 饲料博览, 2019(7):41-47 Yuan X C. Multiplex colloidal gold immunochromatographic assay for simultaneous detection of β-lactamstetracyclines-cefalexin in dairy products[J]. Feed Review, 2019 (7):41-47(in Chinese)
Zhou Y T, Niu L L, Zhu S Y, et al. Occurrence, abundance, and distribution of sulfonamide and tetracycline resistance genes in agricultural soils across China[J]. Science of the Total Environment, 2017, 599-600:1977-1983 Sengeløv G, Agersø Y, Halling-Sørensen B, et al. Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry[J]. Environment International, 2003, 28(7):587-595 蒋临正, 徐悦, 林志平, 等. 苏北地区某奶牛场乳房炎顽固病原菌的分离鉴定及耐药性分析[J]. 江西农业学报, 2020, 32(2):115-119 Jiang L Z, Xu Y, Lin Z P, et al. Isolation and antibiotic-resistance analysis of cow mastitis related persistent pathogens on dairy farm in north Jiangsu Province[J]. Acta Agriculturae Jiangxi, 2020, 32(2):115-119(in Chinese)
Liu J X, Zhao Z, Avillan J J, et al. Dairy farm soil presents distinct microbiota and varied prevalence of antibiotic resistance across housing areas[J]. Environmental Pollution, 2019, 254:113058 Zhou B R, Wang C, Zhao Q, et al. Prevalence and dissemination of antibiotic resistance genes and coselection of heavy metals in Chinese dairy farms[J]. Journal of Hazardous Materials, 2016, 320:10-17 Sun M M, Ye M, Wu J, et al. Positive relationship detected between soil bioaccessible organic pollutants and antibiotic resistance genes at dairy farms in Nanjing, Eastern China[J]. Environmental Pollution, 2015, 206:421-428 Chen Q L, An X L, Li H, et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil[J]. Environment International, 2016, 92-93:1-10 Ohore O E, Addo F G, Zhang S H, et al. Distribution and relationship between antimicrobial resistance genes and heavy metals in surface sediments of Taihu Lake, China[J]. Journal of Environmental Sciences, 2019, 77:323-335 He L Y, Liu Y S, Su H C, et al. Dissemination of antibiotic resistance genes in representative broiler feedlots environments:Identification of indicator ARGs and correlations with environmental variables[J]. Environmental Science & Technology, 2014, 48(22):13120-13129 Forsberg K J, Patel S, Gibson M K, et al. Bacterial phylogeny structures soil resistomes across habitats[J]. Nature, 2014, 509(7502):612-616 Zhao Y, Cocerva T, Cox S, et al. Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils[J]. Science of the Total Environment, 2019, 656:512-520 Deng W W, Zhang A Y, Chen S J, et al. Heavy metals, antibiotics and nutrients affect the bacterial community and resistance genes in chicken manure composting and fertilized soil[J]. Journal of Environmental Management, 2020, 257:109980 Knapp C W, McCluskey S M, Singh B K, et al. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils[J]. PLoS One, 2011, 6(11):e27300 Ding J, An X L, Lassen S B, et al. Heavy metal-induced co-selection of antibiotic resistance genes in the gut microbiota of collembolans[J]. Science of the Total Environment, 2019, 683:210-215 -

计量
- 文章访问数: 2118
- HTML全文浏览数: 2118
- PDF下载数: 140
- 施引文献: 0