[1]
|
Ravishankara A R. Heterogeneous and multiphase chemistry in the troposphere[J]. Science, 1997, 276(5315):1058-1065
|
[2]
|
Suess D T, Prather K A. Mass Spectrometry of Aerosols[J]. Chem Rev, 1999, 99(10):3007-3036
|
[3]
|
Grassian V H. Chemical reactions of nitrogen oxides on the surface of oxide, carbonate, soot, and mineral dust particles:Implications for the chemical balance of the troposphere[J]. J Phys Chem A, 2002, 106(6):860-877
|
[4]
|
唐孝炎,张远航,邵敏. 大气环境化学[M]. 北京:高等教育出版社,2006:185
|
[5]
|
Crutzen P J and Ramanathan V. The ascent of atmospheric sciences[J].Science,2000, 290(5490):299-304
|
[6]
|
丁杰,朱彤.大气中细颗粒物表面多相化学反应的研究[J].科学通报,2003,48(19):2005-2013
|
[7]
|
Usher C R, Michel A E, Grassian V H. Reactions on Mineral Dust[J]. Chem Rev, 2003, 103(12):4883-4940
|
[8]
|
Abbatt J P D. Interactions of atmospheric trace gases with ice surfaces:Adsorption and reaction[J]. Chem Rev, 2003, 103(12):4783-4800
|
[9]
|
Finlayson-Pitts B J. The Tropospheric chemistry of sea salt:a molecular-level view of the chemistry of NaCl and NaBr[J]. Chem Rev, 2003,103(12):4801-4822
|
[10]
|
Rossi M J. Heterogeneous reations on salts[J]. Chem Rev, 2003, 103(12):4823-4882
|
[11]
|
Vogt R, Elliott C, Allen H C, et al. Some new laboratory approaches to studying tropospheric heterogeneous reactions[J]. Atmos Envrion, 1996,30(10/11), 1729-1737
|
[12]
|
Monge M E, Anna B D, Mazri L, et al. Light changes the atmospheric reactivity of soot[J]. Proc Natl Acad Sci, 2010, 107(15):6605-6609
|
[13]
|
Bianco R, Hynes J T. Heterogeneous reactions important in atmospheric ozone deleption:a theoretical perspective[J]. Acc Chem Res, 2006, 39(2):159-165
|
[14]
|
Emmons L K, Carroll M A, Hauglustaine D A, et al. Climatologies of NO<em>x and NO<em>y:A comparison of data and models[J]. Atmos Environ, 1997,31(12):1851-1904
|
[15]
|
Sun Y, Wang L, Wang Y, et al.In situ measurements of NO, NO2, NO<em>y, and O3 in Dinghushan (112°E, 23°N) China during autumn 2008[J]. Atmos Environ, 2010, 44(17):2079-2088
|
[16]
|
戴树桂. 环境化学[M].北京:高等教育出版社,1997:29-36
|
[17]
|
Underwood G M, Miller T M, Grassian V H. Transmission FT-IR and Knudsen cell study of the heterogeneous reactivity of gaseous nitrogen dioxide on mineral oxide particles[J]. J Phys Chem A 1999, 103(31):6184-6190
|
[18]
|
Goodman A L, Underwood G M, Grassian V H. Heterogeneous reaction of NO2:Characterization of gas-phase and adsorbed products from the reaction, 2NO2(g)+ H2O(a)→HONO(g)+ HNO3(a) on hydrated silica particles[J]. J Phys Chem A, 1999, 103(36):7217-7223
|
[19]
|
Underwood G M, Li P, Usher C R, et al. Determining accurate kinetic parameters of potentially important heterogeneous atmospheric reactions on solid particle surfaces with a Knudsen cell reactor[J]. J Phys Chem A, 2000, 104(4):819-829
|
[20]
|
Underwood G M, Song C H, Phadnis M, et al. Heterogeneous reactions of NO2 and HNO3 on oxides and mineral dust:A combined laboratory and modeling study[J]. J Geophys Res, 2001, 106 (D16):18055-18066
|
[21]
|
Ullerstam1 M, Johnson M S, Vogt R, et al. DRIFTS and Knudsen cell study of the heterogeneous reactivity of SO2 and NO2 on mineral dust[J]. Atmos Chem Phys, 2003, 3(6):2043-2051
|
[22]
|
Karagulian F, Santschi C, Rossi M J. The heterogeneous chemical kinetics of N2O5 on CaCO3 and other atmospheric mineral dust surrogates[J]. Atmos Chem Phys, 2006, 6(5):1373-1388
|
[23]
|
Seisel S, Brensen C, Vogt R, et al. Kinetics and mechanism of the uptake of N2O5 on mineral dust at 298 K[J]. Atmos Chem Phys, 2005, 5(12):3423-3432
|
[24]
|
Underwood G M, Li P, Al-Abadleh H, et al. A Knudsen cell study of the heterogeneous reactivity of nitric acid on oxide and mineral dust particles[J]. J Phys Chem A, 2001, 105(27):6609-6620
|
[25]
|
Hanisch F and Crowley J N. Heterogeneous reactivity of gaseous nitric acid on Al2O3, CaCO3, and atmospheric dust samples:a Knudsen cell study[J]. J Phys Chem A, 2001, 105(13):3096-3106
|
[26]
|
Frinak E K, Wermeille S J, Mashburn C D, et al. Heterogeneous reaction of gaseous nitric acid on γ-phase iron(Ⅲ) oxide[J]. J Phys Chem A, 2004, 108(9):1560-1566
|
[27]
|
Johnson E R, Sciegienka J, Carlos-Cuellar S, et al. Heterogeneous uptake of gaseous nitric acid on dolomite (CaMg(CO3)2) and calcite (CaCO3) particles:a Knudsen cell study using multiple, single, and fractional particle layers[J]. J Phys Chem A, 2005, 109(31):6901-6911
|
[28]
|
Mentel T F, Sohn M, Wahner A. Nitrate effect in the heterogeneous hydrolysis of dinitrogen pentoxide on aqueous aerosols[J]. Phys Chem Chem Phys, 1999, 1(24):5451-5457
|
[29]
|
Johnson E R, Grassian V H. Environmental catalysis in earth’s atmosphere:heterogeneous reactions on mineral dust aerosol.//Grassian V H (Ed.), Environmental Catalysis[M]. London: Taylor & Francis Group, 2005:129-156
|
[30]
|
Bauer S E, Balkanski Y, Schulz, M, et al. Global modeling of heterogeneous chemistry on mineral aerosol surfaces:Influence on tropospheric ozone chemistry and comparison to observations[J]. J Geophys Res, 2004, 109, D02304, doi:10.1029/2003JD003868
|
[31]
|
Bian H S and Zender C S. Mineral dust and global tropospheric chemistry: Relative roles of photolysis and heterogeneous uptake[J]. J Geophys Res, 2003, 108(D21):4672-4687
|
[32]
|
Goodman A L, Bernard E T, Grassian V H. Spectroscopic study of nitric acid and water adsorption on oxide particles:Enhanced nitric acid uptake kinetics in the presence of adsorbed water[J]. J Phys Chem A, 2001, 105(26):6443-6457
|
[33]
|
Weis D D, Ewing G E. The reaction of nitrogen dioxide with sea salt aerosol[J]. J Phys Chem A, 1999, 103(25):4865-4873
|
[34]
|
Finlayson-Pitts B J. Reaction of NO2 with NaCl and atmospheric implications of NOCl formation[J]. Nature, 1983, 306(5944):676-677
|
[35]
|
Vogt R, Finlayson-Pitts B J. A diffuse reflectance infrared fourier transform spectroscopic study of the surface reaction of NaCl with gaseous NO2 and HNO3[J]. J Phys Chem, 1994, 98(14):3747-3755
|
[36]
|
Vogt R, Finlayson-Pitts B J. A diffuse reflectance infrared fourier transform spectroscopic (DRIFTS) study of the surface reaction of NaCl with gaseous NO2 and HNO3[J]. J Phys Chem, 1995, 99(34):13052-13052
|
[37]
|
Abbatt J P D, Waschewsky G C G. Heterogeneous interactions of HOBr, HNO3, O3, and NO2 with deliquescent NaCl aerosols at room temperature[J]. J Phys Chem A, 1998, 102(21):3719-3725
|
[38]
|
Langer S, Pemberton R S, Finlayson-Pitts B J. Diffuse reflectance infrared studies of the reaction of synthetic sea salt mixtures with NO2:A key role for hydrates in the kinetics and mechanism[J]. J Phys Chem A, 1997, 101(7):1277-1286
|
[39]
|
Fenter F F, Caloz F, Rossi M J. Heterogeneous kinetics of N2O5 uptake on salt, with a systematic study of the role of surface presentation (for N2O5 and HNO3)[J]. J Phys Chem, 1996, 100(3):1008-1019
|
[40]
|
Honffman R C, Gebel M E, Fox B S, et al. Knudsen cell studies of the reactions of N2O5 and ClONO2 with NaCl:development and appliciation of a model for estimating available surface areas and corrected uptake coefficients[J]. Phys Chem Chem Phys, 2003, 5(9):1780-1789
|
[41]
|
Livingston F E, Finlayson-Pitts B J. The reaction of gaseous N2O5 with solid NaCl at 298 K:Estimated lower limit to the reaction probability and its potential role in tropospheric and stratospheric chemistry geophys[J]. Res Lett, 1991, 18(1):17-20
|
[42]
|
George C, Ponche J L, Mirabel P, et al. Study of the uptake of N2O5 by water and NaCl solutions[J]. J Phys Chem, 1994, 98(35):8780-8784
|
[43]
|
Leu M T, Timonen R S, Keyser L F, et al. Heterogeneous reactions of HNO3(g) + NaCl(s)→HCl(g) + NaNO3(s) and N2O5(g) + NaCl(s) →ClNO2(g) + NaNO3(s)[J]. J Phys Chem, 1995, 99(35):13203-13212
|
[44]
|
Schweitzer F, Mirabel P, George C. Multiphase chemistry of N2O5, ClNO2, and BrNO2[J]. J Phys Chem A, 1998, 102(22):3942-3952
|
[45]
|
Koch T G, van den Bergh H, Rossi M J. A molecular diffusion tube study of N2O5 and HONO2 interacting with NaCl and KBr at ambient temperature[J]. Phys Chem Chem Phys, 1999, 1(11):2687-2694
|
[46]
|
Fenter F F, Caloz F, Rossi M J. Kinetics of nitric acid uptake by salt[J]. J Phys Chem, 1994, 98(39):9801-9810
|
[47]
|
Beichert P, Finlayson-Pitts B J. Knudsen cell studies of the uptake of gaseous HNO3 and other oxides of nitrogen on solid NaCl:the role of surface-adsorbed water[J]. J Phys Chem, 1996, 100(37):15218-15228
|
[48]
|
Hoffman R C, Kaleuati M A, Finlayson-Pitts B J. Knudsen cell studies of the reaction of gaseous HNO3 with NaCl using less than a single layer of particles at 298 K:a modified mechanism[J]. J Phys Chem A, 2003, 107(39):7818-7826
|
[49]
|
De Haan D O, Finlayson-Pitts B J. Knudsen cell studies of the reaction of gaseous nitric acid with synthetic sea salt at 298 K[J]. J Phys Chem A, 1997, 101 (51):9993-9999
|
[50]
|
Leu M T, Timonen R S, Keyser L F. Kinetics of the heterogeneous reaction HNO3(g) + NaBr(s). HBr(g) + NaNO3(s)[J]. J Phys Chem A, 1997, 101(3):278-282
|
[51]
|
Davies J A, Cox R A. Kinetics of the heterogeneous reaction of HNO3 with NaCl:Effect of water vapor[J]. J Phys Chem A, 1998, 102 (39):7631-7642
|
[52]
|
Ghosal S and Hemminger J C. Effect of water on the HNO3 pressure dependence of the reaction between gas-phase HNO3 and NaCl surfaces[J]. J Phys Chem A, 1999, 103(25):4777-4781
|
[53]
|
Zangmeister C D, Pemberton J E. Raman spectroscopy of the reaction of sodium chloride with Nitric acid:Sodium nitrate growth and effect of water exposure[J]. J Phys Chem A, 2001, 105(15):3788-3795
|
[54]
|
Guimbaud C, Arens F, Gutzwiller L, et al. Uptake of HNO3 to deliquescent sea-salt particles:a study using the short-lived radioactive isotope tracer 13N[J]. Atmos Chem Phys, 2002, 2(1):249-257
|
[55]
|
Finlayson-Pitts B J, Ezell M J, Pitts Jr J N. Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2[J]. Nature 1989, 337(6204):241-244
|
[56]
|
Thornton J A, Kercher J P, Riedel T P, et al. A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry[J]. Nature, 2010, 464(7286):271-274
|
[57]
|
Cadle R C, Robbins R C. Physical and chemical properties. Kinetics of atmospheric chemical reactions involving aerosols[J]. Discuss Faraday Soc, 1960, 30:155-161
|
[58]
|
Aubin D G, Abbatt J P. Adsorption of gas-phase nitric acid to n-hexane soot:Thermodynamics and mechanism[J]. J Phys Chem A, 2003, 107(50):11030-11037
|
[59]
|
Nienow A M, Roberts J T. Heterogeneous chemistry of carbon aerosols[J]. Annu Rev Phys Chem, 2006, 57:105-128
|
[60]
|
IPCC W. Climate Change 2007:The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007
|
[61]
|
Alexander D T L, Crozier P A, Anderson J R. Brown carbon spheres in east asian outflow and their optical properties[J]. Science, 2008, 321(5890):833-836
|
[62]
|
Tosca M G, Randerson J T, Zender C S,et al. Do biomass burning aerosols intensify drought in equatorial Asia during El Nio?[J]. Atmos Chem Phys, 2010, 10(8):3515-3528
|
[63]
|
Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J]. Nature 2001, 409 (6821):695-697
|
[64]
|
Ammann M, Kalberer M, Jost D T, et al. Heterogeneous production of nitrous acid on soot in polluted air masses[J].Nature,1998, 395(6698):157-160
|
[65]
|
Arens F, Gutzwiller L, Baltensperger U, et al. Heterogeneous reaction of NO2 on diesel soot particles[J]. Environ Sci Technol, 2001, 35(11):2191-2199
|
[66]
|
Al-Abadleh H A, Grassian V H. Heterogeneous reaction of NO2 on hexane soot:A Knudsen cell and FT-IR study[J]. J Phys Chem A, 2000, 104(51):11926-11933
|
[67]
|
Alcala-Jornod C, van den Bergh H, Rossi M J. Reactivity of NO2 and H2O on soot generated in the laboratory:a diusion tube study at ambient temperature[J]. Phys Chem Chem Phys, 2000, 2(24):5584-5593
|
[68]
|
Stadler D, Rossi M J. The reactivity of NO2 and HONO on flame soot at ambient temperature:The influence of combustion conditions[J]. Phys Chem Chem Phys, 2000, 2(23):5420-5429
|
[69]
|
Prince A P, Wade J L, Grassian V H, et al. Heterogeneous reactions of soot aerosols with nitrogen dioxide and nitric acid:atmospheric chamber and Knudsen cell studies[J]. Atmos Environ, 2002, 36(36/37):5729-5740
|
[70]
|
Tabor K, Gutzwiller L, Rossi M J. Heterogeneous chemical kinetics of NO2 on amorphous carbon at ambient temperature[J]. J Phys Chem, 1994, 98(24):6172-6182
|
[71]
|
Kirchner U, Scheer V, Vogt R. FTIR spectroscopic investigation of the mechanism and kinetics of the heterogeneous reactions of NO2 and HNO3 with soot[J]. J Phys Chem A, 2000, 104 (39):8908-8915
|
[72]
|
Saathoff H, Naumann K H, Riemer N, et al. The loss of NO2, HNO3, NO3 /N2O5, and HO2/HOONO2 on soot aerosol:a chamber and modeling study[J]. Geophys Res Lett, 2001, 28(10):1957-1960
|
[73]
|
Longfellow C A, Ravishankara A R, Hanson D R. Reactive uptake on hydrocarbon soot:Focus on NO2[J]. J Geophys Res Atmos, 1999, 104(D11):13833-13840
|
[74]
|
Kleffmann J, Becker K H, Lackhoff M, et al. Heterogeneous conversion of NO2 on carbonaceous surfaces[J]. Phys Chem Chem Phys, 1999, 17 1(24):5443-5450
|
[75]
|
Lelièvre S, Bedjanian Y, Laverdet G, et al. Heterogeneous reaction of NO2 with hydrocarbon flame soot[J]. J Phys Chem A, 2004, 108 (49):10807-10817
|
[76]
|
Kleffmann J, Wiesen P. Heterogeneous conversion of NO2 and NO on HNO3 treated soot surfaces:atmospheric implications[J]. Atmos Chem Phys, 2005, 5(1):77-83
|
[77]
|
Muoz M S S, Rossi M J. Heterogeneous reactions of HNO3 with flame soot generated under different combustion conditions. Reaction mechanism and kinetics[J]. Phys Chem Chem Phys, 2002, 4(20):5110-5118
|
[78]
|
王明星. 大气化学[M].北京:气象出版社,1999
|
[79]
|
Khalil M A K, Rasmussen R A. Global sources, lifetimes and mass balances of carbonyl sulfide(OCS) and carbon disulfide(CS2) in the Earth’s atmosphere[J]. Atmos Environ, 1984, 18(9):1805-1813
|
[80]
|
于凤莲.城市大气气溶胶细粒子的化学成分及其来源[J]. 气象,2002,28(11):3-6
|
[81]
|
吴雷,王慧.城市颗粒物污染来源与特性分析[J]. 干早环境监测,2003,17(3):157-159
|
[82]
|
汪安璞,杨淑兰,沙因.北京大气气溶胶单个颗粒的化学表征[J]. 环境化学,1996,15(6):488-495
|
[83]
|
臧家业,张代洲,石广玉,等.沙尘粒子在我国内陆传输过程中对硫酸盐和硝酸盐生成的影响[J]. 海洋科学进展,2003,21(3):266-271
|
[84]
|
Kerminen V M, Pirjola L, Boy M, et al. Interaction between SO2 and submicron atmospheric particles[J].Atmos Res, 2000, 54(1):41-57
|
[85]
|
Goodman A L, Li P, Usher C R, et al. Heterogeneous uptake of sulfur dioxide on aluminum and magnesium oxide particles[J]. J Phys Chem A, 2001, 105(25):6109-6120
|
[86]
|
Zhang X Y, Zhuang G S, Chen J M, et al. Heterogeneous reactions of sulfur dioxide on typical mineral particles[J]. J Phys Chem B, 2006, 110 (25):12588-12596
|
[87]
|
Fu H B, Wang X, Wu H B, et al. Heterogeneous uptake and oxidation of SO2 on iron oxides[J]. J Phys Chem C, 2007, 111(16):6077-6085
|
[88]
|
Ma Q X, Liu Y C, He H. Synergistic effect between NO2 and SO2 in their adsorption and reaction on gamma-Alumina[J]. J Phys Chem A, 2008, 112 (29):6630-6635
|
[89]
|
Usher C R, Al-Hosney H, Carlos-Cuellar S, et al. A laboratory study of the heterogeneous uptake and oxidation of sulfur dioxide on mineral dust particles[J]. J Geophys Res, 2002, 107(D23):4713-4721
|
[90]
|
Prince A P, Kleiber P, Grassian V H, et al. Heterogeneous interactions of calcite aerosol with sulfur dioxide and sulfur dioxide-nitric acid mixtures[J]. Phys Chem Chem Phys, 2007, 9(26):3432-3439
|
[91]
|
Baltrusaitis J, Usher C R, Grassian V H. Reactions of sulfur dioxide on calcium carbonate single crystal and particle surfaces at the adsorbed water carbonate interface[J]. Phys Chem Chem Phys, 2007, 9(23):3011-3024
|
[92]
|
Li L, Chen Z M, Zhang Y H, et al. Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate[J]. Atmos Chem Phys, 2006, 6(9):2453-2464
|
[93]
|
Ullerstam M, Vogt R, Langer S, et al. The kinetics and mechanism of SO2 oxidation by O3 on mineral dust[J]. Phys Chem Chem Phys, 2002, 4(19):4694-4699
|
[94]
|
Adams J W, Rodriguez D, Cox R A. The uptake of SO2 on Saharan dust:a flow tube study[J]. Atmos Chem Phys, 2005, 5(10):2679-2689
|
[95]
|
Mller D. On the global natural sulphur emission[J]. Atmos Environ, 1984, 18(1):29-39
|
[96]
|
吴洪波,王晓,陈建民等,羰基硫与气溶胶典型组分的复相反应机制[J]. 科学通报,2004,49(8):739-743
|
[97]
|
|
[98]
|
Chen H H, Kong L D, Chen J M, et al. Heterogeneous uptake of carbonyl sulifide on hematite and hematite-NaCl mixtures[J]. Environ Sci Technol, 2007, 41(18):6484-6490
|
[99]
|
He H, Liu J F, Mu Y J, et al. Heterogeneous oxidation of carbonyl sulfide on atmospheric particles and alumina[J]. Environ Sci Technol, 2005, 39(24):9637-9642
|
[100]
|
Liu J F, Yu Y B, Mu Y J, et al. Mechanism of heterogeneous oxidation of carbonyl sulfide on Al2O3:an in situ diffuse reflectance infrared Fourier transform spectroscopy investigation[J]. J Phys Chem B, 2006, 110(7):3225-3230
|
[101]
|
刘俊锋. 羰基硫在土壤和矿质大气颗粒物上的吸收与转化. 中国科学院博士学位论文, 2006
|
[102]
|
Watts S F. The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide[J]. Atmos Environ, 2000, 34(5):761-779
|
[103]
|
Gebel M E, Finlayson-Pitts B J, Ganske J A. The uptake of SO2 on synthetic sea salt and some of its components[J]. Geophys Res Lett, 2000, 27(6):887-890
|
[104]
|
Laskin A, Gaspar D J, Wang W H, et al. Reactions at interfaces as a source of sulfate formation in sea-salt particles[J]. Science, 2003, 301(5631):340-344
|
[105]
|
Li L, Chen Z M, Zhang Y H, et al. Heterogeneous oxidation of sulfur dioxide by ozone on the surface of sodium chloride and its mixtures with other components[J]. J Geophys Res, 2007, 112, D18301, doi:10.1029/2006JD008207
|
[106]
|
Novakov T, Chang S G, Harker A B. Sulfates as pollution particulates. Catalytic formation on carbon (soot) particles[J]. Science, 1974, 186(4160):259-261
|
[107]
|
Benner W H, Brodzinsky R, Novakov T. Oxidation of sulfur dioxide in droplets which contain soot particles[J]. Atmos Environ, 1982, 16(6):1333-1339
|
[108]
|
Brodzinsky R, Chang S G, Markowitz S S, et al. Kinetics and mechanism for the catalytic oxidation of sulfur dioxide on carbon in aqueous suspensions[J]. J Phys Chem, 1980, 84(25):3354-3358
|
[109]
|
Chang S G, Toossi R, Novakov T. The importance of soot particles and nitrous acid in oxidizing sulfur dioxide in atmospheric aqueous droplets[J]. Atmos Environ, 1981, 15(7):1287-1292
|
[110]
|
Toossi R, Novakov T. The lifetime of aerosols in ambient air:consideration of the effects of surfactants and chemical reactions[J]. Atmos Environ, 1985, 19():127-133
|
[111]
|
Smith D M and Chughtai A R. The surface structure and reactivity of black carbon[J]. Colloids Surf. A 1995, 105(1):47-77
|
[112]
|
Rogaski C A, Golden D M, Williams L R. Reactive uptake and hydration experiments on amorphous carbon treated with NO2, SO2, O3, HNO3, and H2SO4[J]. Geophys Res Lett, 1997, 24(4):381-384
|
[113]
|
Mészáros A, Mészáros E. Sulfate formation on elemental carbon particles[J]. Aerosol Sci Technol, 1989, 10(2):337-342
|
[114]
|
Gentilizza M and Vadjic V. The effect of various types of soot on the behavior of sulfur dioxide in the air investigated on model systems[J]. Sci Total Environ, 1985, 41(1):45-53
|
[115]
|
Molina-Sabio M, Muecas A M A, Rodríguez-Reinoso F, et al. Adsorption of CO2 and SO2 on activated carbons with a wide range of micropore size distribution[J]. Carbon, 1995, 33(12):1777-1782
|
[116]
|
Mamane Y and Gottlieb J. The study of heterogeneous reactions of carbonaceous particles with sulfur and nitrogen oxides using a single particle approach[J]. J Aerosol Sci, 1989, 20(5):575-584
|
[117]
|
Oyama S T. Chemical and catalytic properties of ozone[J]. Catal Rev-Sci Eng, 2000, 42(3):279-322
|
[118]
|
Li W, Oyama S T. Mechanism of ozone decomposition on a manganese oxide catalyst. 2. Steady-state and transient kinetic studies[J]. J Am Chem Soc, 1998, 120(35):9047-9052
|
[119]
|
Hanisch F, Crowley J N. Ozone decomposition on Saharan dust:an experimental investigation[J]. Atmos Chem Phys, 2003, 3(1):119-130
|
[120]
|
Dentener F J, Carmichael G R, Zhang Y, et al. Role of mineral aerosol as a reactive surface in the global troposphere[J]. J Geophys Res, 1996, 101(D17):22869-22889
|
[121]
|
Prospero J M, Schmitt R, Cuevas E, et al. Temporal variability of summer-time ozone and aerosols in the free troposphere over the eastern North Atlantic[J]. Geophys Res Lett, 1995, 22(21):2925-2928
|
[122]
|
Michel A E, Usher C R, Grassian V H. Reactive uptake of ozone on mineral oxides and mineral dusts[J]. Atmos Environ, 2003, 37(23):3201-3211
|
[123]
|
Usher C R, Michel A E, Stec D, et al. Laboratory studies of ozone uptake on processed mineral dust[J]. Atmos Environ, 2003, 37(38):5337-5347
|
[124]
|
Oum K W, Lakin M J, DeHaan D O, et al. Formation of Molecular Chlorine from the Photolysis of Ozone and Aqueous Sea-Salt Particles[J]. Science, 1998, 279(5347):74-77
|
[125]
|
Oum K W, Lakin M J, Finlayson-Pitts, B J. Bromine activation in the troposphere by the dark reaction of O3 with seawater ice[J]. Geophys Res Lett, 1998, 25(21):3923-3926
|
[126]
|
Hirokawa J, Onaka K, Kajii Y, et al. Heterogenenous processes involving sodium halide particles and ozone: molecular bromine release in the marine boundary layer in the absence of nitrogen oxides[J]. Geophys Res Lett, 1998, 25(13):2449-2452
|
[127]
|
Il’in S D, Selikhanovich V V, Gershenzon Y M, et al. Study of heterogeneous ozone loss on materials typical of atmospheric aerosol species[J]. Sov J Chem Phys, 1991, 8:1858-1880.
|
[128]
|
Mochida M, Hirokawa J, Akimoto H. Unexpected large uptake of O3 on sea salts and the observed Br2 formation Geophys[J]. Res Lett, 2000, 27(17):2629-2632
|
[129]
|
Sadanaga Y, Hirokawa J, Akimoto H. Formation of molecular chlorine in dark condition:Heterogeneous reaction of ozone with sea salt in the presence of ferric ion[J]. Geophys Res Lett, 2001, 28(23):4433-4436
|
[130]
|
Stephens S, Rossi M J, Golden D M. The heterogeneous reaction of ozone on carbonaceous surfaces[J]. Int J Chem Kinet, 1986, 18(10):1133-1149
|
[131]
|
Fendel W, Matter D, Burtscher H, et al. Interaction between carbon or iron aerosol particles and ozone[J]. Atmos Environ, 1995, 29(9):967-973
|
[132]
|
Lelièvre S, Bedjanian Y, Pouvesle N, et al. Heterogeneous reaction of ozone with hydrocarbon flame soot[J]. Phys Chem Chem Phys, 2004, 6(6):1181-1191
|
[133]
|
Bekki S. On the possible role of aircraft-generated soot in the middle latitude ozone depletion[J]. J Geophys Res, 1997, 102(D9):10751-10758
|
[134]
|
Lary D J, Toumi R, Lee A M, et al. Carbon aerosols and atmospheric photochemistry[J]. J Geophys Res, 1997, 102(D3):3671-3682
|
[135]
|
Kamm S, Mhler O, Naumann K H, et al. The heterogeneous reaction of ozone with soot aerosol[J]. Atmos Environ, 1999, 33(28):4651-4661
|
[136]
|
Simth D M and Chughtai A R. Reaction kinetics of ozone at low concentrations with n-hexane soot[J]. J Geophys Res, 1996, 101(D14):19607-19620
|
[137]
|
Simth D M, Chughtai A R. Photochemical effects in the heterogeneous reaction of soot with ozone at low concentrations[J]. J Atmos Chem, 1997, 26:77-91
|
[138]
|
Daly H M, Horn A B. Heterogeneous chemistry of toluene, kerosene and diesel soots[J]. Phys Chem Chem Phys, 2009, 11(7):1069-1076
|
[139]
|
Decesaria S, Facchinia M C, Mattaa E, et al. Water soluble organic compounds formed by oxidation of soot[J]. Atmos Environ, 2002, 36(11):1827-1832
|
[140]
|
McCabe J, Abbatt J P D. Heterogeneous loss of gas-phase ozone on n-hexane soot surfaces:Similar kinetics to loss on other chemically unsaturated solid surfaces[J]. J Phys Chem C, 2009, 113(6):2120-2127
|
[141]
|
Plschl U, Letzel T, Schauer C, et al. Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo pyrene:O3 and H2O adsorption, benzo pyrene degradation, and atmospheric implications[J]. J Phys Chem A, 2001, 105(16):4029-4041
|
[142]
|
Alebi Jureti A, Cvita T, Klasinc L. Kinetics of heterogeneous ozone reactions[J]. Chemosphere, 2000, 41(5):667-670
|
[143]
|
Liu Y C, Liu C, Ma J Z, et al. Structural and hygroscopic changes of soot during heterogeneous reaction with O3[J]. Phys chem chem phys, 2010, 12(36): 10896-10903
|
[144]
|
Carlos-Cuellar S, Li P, Christensen A P, et al. Heterogeneous uptake kinetics of volatile organic compounds on oxide surfaces using a Knudsen cell reactor:Adsorption of acetic acid, formaldehyde, and methanol on α-Fe2O3, α-Al2O3, and SiO2[J]. J Phys Chem A, 2003, 107(21):4250-4261
|
[145]
|
徐冰烨. 甲醛在矿质氧化物颗粒表面的大气非均相反应. 北京大学博士学位论文, 2006.
|
[146]
|
Zhao Y, Chen Z and Zhao J. Heterogeneous reactions of methacrolein and methyl vinyl ketone on α-Al2O3 particles[J]. Environ Sci Technol, 2010, 44 (6):2035-2041
|
[147]
|
Chen Z M, Jie C Y, Li S, et al. Heterogeneous reactions of methacrolein and methyl vinyl ketone:Kinetics and mechanisms of uptake and ozonolysis on silicon dioxide[J]. J Geophys Res, 2008, 113, D22303, doi:10.1029/2007JD009754.
|
[148]
|
Knipping E M, Lakin M J, Foster K L, et al. Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols[J]. Science, 2000, 288(5464):301-307
|
[149]
|
Aubin D G, Abbatt J P D. Interaction of NO2 with hydrocarbon soot:Focus on HONO yield, surface modification, and mechanism[J]. J Phys Chem A, 2007, 111(28), 6263-6273
|
[150]
|
Miller T M and Grassian V H. Heterogeneous chemistry of NO2 on mineral oxide particles:Spectroscopic evidence for oxide-coordinated and water-solvated surface nitrate[J]. Geophys Res Lett, 1998, 25(20):3835-3838
|
[151]
|
Hung H M, Katrib Y and Martin S T. Products and mechanisms of the reaction of oleic acid with ozone and nitrate radical[J]. J Phys Chem A, 2005, 109(20):4517-4530
|
[152]
|
Eliason T L, Aloisio S, Donaldson D J, et al. Processing of unsaturated organic acid films and aerosols by ozone[J]. Atmos Environ, 2003, 37(16):2207-2219
|
[153]
|
崔虎雄,成天涛,陈建民,等.SO2在Fe2O3颗粒表面不同温度下非均相反应的实验模拟[J]. 物理化学学报,2008, 24(12):2331-2336
|
[154]
|
Usher C R, Baltrusaitis J, Grassian V H. Spatially resolved product formation in the reaction of formic acid with calcium carbonate (1014):The role of step density and adsorbed water-assisted ion mobility[J]. Langmuir, 2007, 23(13):7039-7045
|
[155]
|
Liu Y J, Zhu T, Zhao D F, et al. Investigation of the hygroscopic properties of Ca(NO3)2 and internally mixed Ca(NO3)2/CaCO3 particles by micro-Raman spectrometry[J]. Atmos Chem Phys, 2008, 8(23):7205-7215
|
[156]
|
Lu Z F, Hao J M, Hu L H. The compaction of soot particles generated by spark discharge in the propene ozonolysis system[J]. Aerosol Sci, 2008, 39(10):897-903
|
[157]
|
Pagels J, Khalizov A F, McMurry P H, et al. Processing of soot by controlled sulphuric acid and water condensation—mass and mobility relationship[J]. Aerosol Sci Tech, 2009, 43(7):629-640
|
[158]
|
Ma Q X, He H and Liu Y C. In situ DRIFTS study of hygroscopic behavior of mineral aerosol[J]. J Environ Sci, 2010, 22(4):555-560
|
[159]
|
Al-Abadleh H A and Grassian V H. Phase transitions in magnesium nitrate thin films:A transmission FT-IR study of the deliquescence and efflorescence of nitric acid reacted magnesium oxide interfaces[J]. J Phys Chem B, 2003, 107(39):10829-10839
|
[160]
|
Al-Abadleh H A, Krueger B J, Ross J L, et al. Phase transitions in calcium nitrate thin films[J]. Chem Commun, 2003, (22):2796-2797
|
[161]
|
Krueger B J, Grassian V H, Laskin A, et al. The transformation of solid atmospheric particles into liquid droplets through heterogeneous chemistry:Laboratory insights into the processing of calcium containing mineral dust aerosol in the troposphere[J].Geophys Res Lett, 2003, 30(3):1148-1151
|
[162]
|
Al-Abadleh H A, Al-Hosney H A and Grassian V H. Oxide and carbonate surfaces as environmental interfaces:the importance of water in surface composition and surface reactivity[J]. J Mol Catal A:Chem, 2005, 228(1/2):47-54
|
[163]
|
Alexander L, Martin J I, Aviad I, et al. Direct observation of completely processed calcium carbonate dust particles[J]. Faraday Discuss, 2005, 130:453-468
|
[164]
|
Shi Z B, Zhang D Z, Hayashi M, et al. Influences of sulfate and nitrate on the hygroscopic behaviour of coarse dust particles[J]. Atmos Environ, 2008, 42(4):822-827
|
[165]
|
Zhang R Y, Khalizov A F, Pagels J, et al. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing[J]. Proc Natl Acad Sci, 2008, 105(30):10291-10296
|
[166]
|
Geoge I J, Chang R Y W, Vlasenko D A, et al. Modification of cloud condensation nucleus activity of organic aerosols by hydroxyl radical heterogeneous oxidation[J]. Atmos Environ, 2009, 43(32):5038-5045
|
[167]
|
George I J, Abbatt J P D. Chemical evolution of secondary organic aerosol from OH-initiated heterogeneous oxidation[J]. Atmos Chem Phys, 2010, 10(12):5551-5563
|
[168]
|
Chang R Y W, Slowik J G, Shantz N C, et al. The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences:relationship to degree of aerosol oxidation[J]. Atmos Chem Phys, 2010, 10(11):5047-5064
|
[169]
|
Jimenez J L, Canagaratna M R, Donahue N M, et al. Evolution of organic aerosols in the atmosphere[J]. Science, 2009, 326(5959):1525-1529.
|
[170]
|
Fan J, Zhang R, Tao W K, et al. Effects of aerosol optical properties on deep convective clouds and radiative forcing[J]. J Geophys Res, 2008, 113, D08209, DOI:10.1029/2007JD009257
|
[171]
|
Zhang R Y, Suh I, Zhao J, et al. Atmospheric new particle formation enhanced by organic acids[J]. Science, 2004, 304(5676):1487-1490
|
[172]
|
Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon[J]. Nat Geosci, 2008, 1(4):221-227
|
[173]
|
Zhang R Y, Tie X X, Bond D W. Impacts of anrhropogenic and natural NO<em>x sources over the U.S. on tropospheric chemistry[J]. Proc Natl Acad Sci, 2003, 100(4):1505-1509
|
[174]
|
Li G, Zhang R, Fan J, et al. Impacts of black carbon aerosol on photolysis and ozone[J]. J Geophys Res, 2005, 110, D23206, DOI:10.1029/2005JD005898
|
[175]
|
Khalizov A F, Zhang R, Zhang D, et al. Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor[J]. J Geophys Res, 2009, 114, D05208, DOI:10.1029/2008JD010595
|
[176]
|
Xue H, Khalizov A F, Wang L, et al. Effects of dicarboxylic acid coating on the optical properties of soot[J]. Phys Chem Chem Phys, 2009, 11(36):7869-7875
|
[177]
|
Shiraiwa M, Kondo Y, Iwamoto T, et al. Amplification of light absorption of black carbon by organic coating[J]. Aerosol Sci Technol, 2010, 44(1):46-54
|
[178]
|
Mikhailov E F, Vlasenko S S, Podgorny I A, et al. Optical properties of soot-water drop agglomerates:An experimental study[J]. J Geophys Res, 2006, 111, D07209, DOI:10.1029/2005JD006389
|
[179]
|
Khalizov A F, Xue H X, Wang L, et al. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid[J]. J Phys Chem A, 2009, 113(6):1066-1074
|
[180]
|
Schuttlefield J, Rubasinghege G, EI-Maazawi M, et al. Photochemistry of adsorbed nitrate[J]. J Am Chem Soc, 2008, 130(37):12210-12211
|
[181]
|
刘永春. 羰基硫在矿质氧化物上的非均相反应. 中国科学院博士学位论文, 2008
|