烟炱气溶胶的光学辐射特性研究

王雷, 葛茂发, 王炜罡. 烟炱气溶胶的光学辐射特性研究[J]. 环境化学, 2011, 30(1): 120-129.
引用本文: 王雷, 葛茂发, 王炜罡. 烟炱气溶胶的光学辐射特性研究[J]. 环境化学, 2011, 30(1): 120-129.
WANG Lei, GE Maofa, WANG Weigang. THE INVESTIGATIONS OF OPTICAL PROPERTIES OF SOOT[J]. Environmental Chemistry, 2011, 30(1): 120-129.
Citation: WANG Lei, GE Maofa, WANG Weigang. THE INVESTIGATIONS OF OPTICAL PROPERTIES OF SOOT[J]. Environmental Chemistry, 2011, 30(1): 120-129.

烟炱气溶胶的光学辐射特性研究

  • 基金项目:

    国家自然科学基金项目(40925016, 40830101)资助.

THE INVESTIGATIONS OF OPTICAL PROPERTIES OF SOOT

  • Fund Project:
  • 摘要: 烟炱气溶胶是大气气溶胶的重要组成部分,它能直接或间接地影响地-气辐射平衡,进而对全球气候产生重大影响.目前,关于烟炱气溶胶光学性质的研究已经成为气溶胶科学中的前沿和热点课题,对其进行系统的实验室研究可以为更好地分析和认识外场观测结果提供基础,并为数值模式模拟研究提供准确的基本参数.本文简要介绍了烟炱气溶胶的来源和分类,重点阐述了其气候效应、光学性质的影响因素以及相关的实验室研究,并对相应的研究手段进行了总结.在此基础上还提出了当前主要的科学问题,同时也对未来这一重要领域的研究前景进行了展望.
  • 加载中
  • [1] Bond T C, Streets D G, Yarber K F, et al. A technology-based global inventory of black and organic carbon emissions from combustion[J]. J Geophys Res, 2004, 109, D14203, doi:10.1029/2003jd003697
    [2] Penner J E, Eddleman H, Novakov T. Towards the development of a global inventory for black carbon emissions[J]. Atmos Environ, 1993, 27: 1277-1295
    [3] Bond T C, Bergstrom R W. Light absorption by carbonaceous particles: an investigative review[J]. Aerosol Sci Tech, 2006,40:27-67
    [4] Penner J E, Novakov T. Carbonaceous particles in the atmosphere: a historical perspective to the Fifth International Conference on carbonaceous particles in the atmosphere[J]. J Geophys Res, 1996, 101: 19373-19378
    [5] Andreae M O, Geleneser A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols[J]. Atmos Chem Phys, 2006, 6: 3131-3148
    [6] IPCC. Third Assessment Report, Climate Change 2001: The Scientific Basis. New York: Cambridge University Press, 2001
    [7] Chung C, Ramanathan V. Relationship between trends in land precipitation and tropical SST gradient[J]. Geophys Res Lett, 2007, 34, doi10.1029/2007GL030491
    [8] Martin R V, Daniel J J, Robert M Y, et al.Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols[J].J Geophys Res, 2003, 108: 4097-4116
    [9] Chuang C C,Penner J E,GrantK E,et al. Cloud susceptibility and the first aerosol indirect forcing,sensitivity to black carbon and aerosol concentrations[J].J Geophys Res,2002, 107: 4564
    [10] Strawa A W, Drdla K, Ferry G V, et al. Carbonaceous aerosol (soot) measured in the lower stratosphere during POLARIS and its role in stratospheric photochemistry[J]. Journal of Geophysical Research,1999,104:26753-26766
    [11] 葛茂发,刘泽,王炜罡. 二次光化学氧化剂与气溶胶间的非均相过程[J].地球科学进展,2009,24(4):351-362
    [12] Ulrich Poschl. Atmospheric aerosols: composition, transformation, climate and health effects[J]. Angew Chem Int Ed, 2005, 44: 7520-7540
    [13] Andreae M O, Rosenfeld D, Artaxo P, et al. Smoking rain clouds over the amazon[J]. Science, 2004, 303: 1337-1341
    [14] Rosenfeld D. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall[J]. Geophys Res Lett, 1999, 26: 3105-3108
    [15] Lohmann U, Feichter J. Global indirect aerosol effects: A review[J]. Atmos Chem Phys, 2005, 5: 715-737
    [16] Haywood J M, Boucher O. Estimates of direct and indirect radiative forcing due to tropospheric aerosols: A review[J]. Rev Geophys, 2000, 38: 513-543
    [17] Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon[J]. Nat Geosci, 2008, 1:221-227
    [18] Clarke A, Noone K. Soot in the Arctic: a cause for perturbation in radiative transfer[J]. J Geophys Res, 1985, 19: 2045-2053
    [19] Warren S, Wiscombe W. Dirty snow after nuclear war[J]. Nature, 1985, 313: 467-470
    [20] Xu B, Cao J, Hansen J, et al. Black soot and the survival of Tibetan glaciers[J]. Proc Natl Acad Sci, 2009, 106: 22114-22118
    [21] 明镜,效存德,杜振彩,等. 中国西部冰雪中的黑碳及其辐射强迫[J].气候变化研究进展,2009,5(6):328-335
    [22] Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos[J]. Proc Natl Acad Sci, 2004, 101: 423-428
    [23] Flanner M G, Zender C S, Randerson J T, el al. Present-day forcing and response from black carbon in snow[J]. J Geophys Res, 2007, 112, doi:10.1029/2006JD008003
    [24] Holland M M, Bitz C M, Tremblay B. Future abrupt reductions in the summer Arctic sea ice[J]. Geophys Res Lett, 2006, 33, doi:10.1029/2006GL028024
    [25] Ramanathan V, Crutzen P J, Kieh J T, et al. Aerosols,climate,and the hydrological cycle[J]. Science, 2001, 294: 2119-2124
    [26] Venkataraman C, Habib G, Eiguren F A, et al. Residential biofuels in South Asia: carbonaceous aerosol emission and climate impacts[J]. Science, 2005, 307: 1454-1456
    [27] Ramanathan V, Ramana M V, Roberts G, et al. Warming trends in Asia amplified by brown cloud solar absorption[J]. Nature, 2007, 448: 575-578
    [28] Kaufman Y J, Tanré D, Dubovik O, et al. Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing[J]. Geophys Res Lett, 2001, 28: 1479-1482
    [29] Haywood J M, Osborne S R, Francis P N, et al. The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircrat during SAFARI 2000[J]. J Geophys Res, 2003, 108, doi:10.1029/2002JD002226
    [30] Bellouin N, Boucher O, Tanré D, et al. Aerosol absorption over the clear-sky oceans deduced from POLDER-1 and AERONET observations[J]. Geophys Res Lett, 2003, 30, doi:10.1029/2003GL017121
    [31] Wang C. A modeling study on the climate impacts of black carbon aerosols[J]. J Geophys Res, 2004, 109, doi:10.1029/2003JD004084
    [32] Chung S H, Seinfeld J H. Climate response of direct radiative forcing of anthropogenic black carbon[J]. J Geophys Res, 2005, 110, doi:10.1029/2004JD005441
    [33] Ramanathan V, Chung C, Kim D, et al. Atmospheric brown clouds: impacts on South Asian climate and hydrologic cycle[J]. Proc Natl Acad Sci, 2005, 102: 5326-5333
    [34] Menon S, Hanson J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India[J]. Science, 2006, 297: 2250-2253
    [35] Bellouin N, Boucher O, Haywood J, et al. Global estimate of aerosol direct radiative forcing from satellite measurements[J]. Nature, 2005, 438: 1138-1141
    [36] Yu H, Kaufman Y J, Chin M, et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing[J]. Atmos Chem Phys, 2006, 6: 613-666
    [37] Chung C, Ramanathan V, Kim D, et al. Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations[J]. J Geophys Res, 2005, 110, doi:10.1029/2005JD006356
    [38] Ramanathan V, Li F, Ramana M V, et al. Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing[J]. J Geophys Res, 2007, 112, doi:10.1029/2006JD008124
    [39] Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J]. Nature, 2001, 409: 695-697
    [40] Jacobson M Z. Control of fossil fuel particulate black carbon and organic matter,possibly the most effective method of slowing global warming[J]. J Geophys Res, 2002, 107: 4410-4432
    [41] Kirchstetter T W, Novakov T, Hobbs P V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon[J]. J Geophys Res, 2004, 109, doi:10.1029/2004JD004999
    [42] Popovicheva O B, Kireeva E D, Shonija N K, et al. Water interaction with laboratory simulated fossil fuel combustion particles[J]. J Phys Chem A, 2009, 113: 10503-10511
    [43] Yin S, Wang W, Ge Maofa, The uptake of ethyl iodide on black carbon surface[J]. Chinese Sci Bull, 2008, 53(5): 733-738
    [44] Ge Maofa, Wang W, Yin S. Heterogenous chemistry of dimethyl sulfide on soot surfaces[J]. Chem Phys Lett, 2008, 453: 296-300
    [45] Mikhailov E F, Vlasenko S S, Podgorny I A, et al. Optical properties of soot water drop agglomerates: An experimental study[J]. J Geophys Res, 2006, 111, D07209, doi:10.1029/2005JD006389
    [46] Wiley J, Hoboken N J, Sierk B, et al. Field measurements of water vapor continuum absorption in the visible and near-infrared[J]. J Geophys Res, 2004, 109, D08307, doi:10.1029/ 2003JD003586
    [47] Adachi K, Buseck P R.Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City[J]. Atmos Chem Phys,2008, 8: 6469-6481
    [48] Fuller K A, Malm W C, Kreidenweis S M. Effects of mixing on extinction by carbonaceous particles[J]. J Geophys Res, 1999, 104: 15941-15954
    [49] Jacobson M Z. A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols[J]. Geophys Res Lett, 2000, 27: 217-220
    [50] Xue H, Khalizov A F, Wang L, et al. Effects of dicarboxylic acid coating on the optical properties of soot[J]. Phys Chem Chem Phys, 2009, 11: 7869-7875
    [51] Peng C, Chan M N, Chan C K. The hygroscopic properties of dicarboxylic and multifunctional acids: Measurements and UNIFAC predictions[J]. Environ Sci Technol, 2001, 35: 4495-4501
    [52] Prenni A J, DeMott P J, Kreidenweis S M, et al. The effects of low molecular weight dicarboxylic acids on cloud formation[J]. J Phys Chem A, 2001, 105: 11240-11248
    [53] Erlick C, Schlesinger D. Another look at the influence of absorbing aerosols in drops on cloud absorption: large aerosolsm[J]. J Aerosol Sci, 2008, 65: 661-669
    [54] Xue H, Khalizov A F, Wang L, et al. Effects of coating of dicarboxylic acids on the mass mobility relationship of soot particles[J]. Environ Sci Technol, 2009, 43: 2787-2792
    [55] Zhang R, Khalizov A F, Pagels J, et al. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing[J]. Proc Natl Acad Sci, 2008, 105: 10291-10296
    [56] Khalizov A F, Zhang R, Zhang D, et al. Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor[J]. J Geophys Res, 2009, 114, D05208, doi:10.1029/2008JD01059
    [57] Schnaiter M, Linke V, Mhler O, et al. Absorption amplification of black carbon internally mixed with secondary organic aerosol[J]. J Geophys Res, 2005, 110, D19204, doi:10.1029/2005JD006046
    [58] Adachi K, Buseck P R. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City[J]. Atmos Chem Phys, 2008, 8: 6469-6481
    [59] Gangl M, Kocifajb M, Videenc G, et al. Light absorption by coated nano-sized carbonaceous particles[J]. Atmos Environ, 2008, 42: 2571-2581
    [60] Shiraiwa M, Kondo Y, Iwamoto T, et al. Amplification of light absorption of black carbon by organic coating[J]. Aerosol Sci Tech, 2010, 44: 46-54
    [61] Chen Y, Penner J E, Uncertainty analysis for estimates of the first indirect aerosol effect[J]. Atmos Chem Phys, 2005, 5: 2935-2948
    [62] Liousse C, Cachier H, Jennings S G, Optical and thermal measurements of black carbon aerosol content in different environments: Variation of the specific attenuation cross section[J]. Atmos Environ, 1993, 27: 1203- 1211
    [63] Sorensen C M. Light scattering by fractal aggregates: A review[J]. Aerosol Sci Tech, 2001, 35: 648-687
    [64] Carrico C M, Bergin M H, Xu J, et al. Urban aerosol radiative properties: measurements during the 1999 Atlanta supersite experiment[J]. J Geophys Res, 2003, 108(D7), 8422, doi:10.1029/2001JD001222
    [65] Arnott W P, Moosmüller H, Rogers C F, et al. Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description[J]. Atmos Environ, 1999, 33: 2845-2852
    [66] Weingartner E, Saathof H, Schnaiter M, et al. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers[J]. J Aerosol Sci, 2003, 34: 1445-1463
    [67] Bond T C, Anderson T L, Campbell D. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols[J]. Aerosol Sci Tech, 1999, 30: 582-600
    [68] Arnott W P, Hamasha K, Moosmüller H, et al. Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: evaluation with a photoacoustic instrument and 3-wavelength nephelometer[J]. Aerosol Sci Tech, 2005, 39: 17-29
    [69] Petzold A, Schloesser H, Sheridan P J, et al. Evaluation of multi-angle absorption photometry for measuring aerosol light absorption[J]. Aerosol Sci Tech, 2005, 39: 40-51
    [70] Petzold A, Schnlinner M. Multi-angle absorption photometry-a new method for the measurement of aerosol light absorption and atmospheric black carbon[J]. J Aerosol Sci, 2004, 35: 421-441
    [71] Sheridan P J, Arnott W P, Ogren J A, et al. The reno aerosol optics study: an evaluation of aerosol absorption measurement methods[J]. Aerosol Sci Tech, 2005, 39: 1-16
    [72] Schnaiter M, Horvath H, Mhler O, et al. UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols[J]. J Aerosol Sci, 2003, 34: 1421-1444
    [73] Schnaiter M, Schmid O, Petzold A, et al. Measurement of wavelength-resolved light absorption by aerosols utilizing a UV-VIS extinction cell[J]. Aerosol Sci Tech, 2005, 39: 249-260
    [74] Schnaiter A, Gimmler M, Llamas I, et al. Strong spectral dependence of light absorption by organic carbon particles formed by propane combustion[J]. Atmos Chem Phys, 2006, 6: 2981-2990
    [75] Thompson J E, Duvall R, Policarpro D, et al. Development of a fixed frequency aerosol albedometer[J]. Opt Express, 2008, 16:2191-2205
    [76] 汤洁,温玉璞,周凌唏等.中国西部大气清洁地区黑碳气溶胶的观测研究[J].应用气象学报,1999,2(5):160-169
    [77] 潘晓乐,颜鹏,汤洁,2006年北京春季气溶胶吸收系数的分离研究[J].气候变化研究进展,2007,3:249-254
    [78] 白建辉,王庚辰. 黑碳气溶胶研究新进展[J].科学技术与工程,2005,5(9):585-607
    [79] 朱崇抒,曹军骥,刘随心.西安大气黑碳气溶胶的观测和分析[J].过程工程学报,2006,6(增刊2):10-13
    [80] 陶俊,朱李华,韩静磊等,2007年春季广州城区黑碳气溶胶污染特征的初步研究[J].气候与环境科学研究,2008,13(5):658-662
    [81] 张立盛,石广玉.硫酸盐和烟尘气溶胶辐射特性及辐射强迫的模拟估算[J].大气科学,2001,25(2):213-242
    [82] 张靖,银燕.黑碳气溶胶对我国区域气候影响的数值模拟[J].南京气象学院学报,2008,31(6):852-859
    [83] 张华,马井会,郑有飞.黑碳气溶胶辐射强迫全球分布的模拟研究[J].大气科学,2008,32(5):1147-1158
    [84] 马井会,郑有飞,张华. 黑碳气溶胶光学厚度的全球分布以及分析[J].气象科学,2007,27:549-556
    [85] 王志立,郭品文,张华.黑碳气溶胶直接辐射强迫及其对中国夏季降水影响的模拟研究[J].气候与环境研究,2009,14(2):161-171
    [86] Novakov T, Ramanthan V, Kirchstetter T W, et al. Large historical changes of fossil-fuel black carbon aerosols[J]. Geophys Res Lett, 2003, 30, doi:10.1029/2002GL016345
    [87] Bond T C, Bhardwaj E, Dong R, et al. Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850—2000[J]. Global Biogeochem Cy, 2007, 21, doi:10.1029/2006GB002840
  • 加载中
计量
  • 文章访问数:  1322
  • HTML全文浏览数:  1250
  • PDF下载数:  303
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-07-07
王雷, 葛茂发, 王炜罡. 烟炱气溶胶的光学辐射特性研究[J]. 环境化学, 2011, 30(1): 120-129.
引用本文: 王雷, 葛茂发, 王炜罡. 烟炱气溶胶的光学辐射特性研究[J]. 环境化学, 2011, 30(1): 120-129.
WANG Lei, GE Maofa, WANG Weigang. THE INVESTIGATIONS OF OPTICAL PROPERTIES OF SOOT[J]. Environmental Chemistry, 2011, 30(1): 120-129.
Citation: WANG Lei, GE Maofa, WANG Weigang. THE INVESTIGATIONS OF OPTICAL PROPERTIES OF SOOT[J]. Environmental Chemistry, 2011, 30(1): 120-129.

烟炱气溶胶的光学辐射特性研究

  • 1. 中国科学院化学研究所, 北京分子科学国家实验室, 北京, 100190
基金项目:

国家自然科学基金项目(40925016, 40830101)资助.

摘要: 烟炱气溶胶是大气气溶胶的重要组成部分,它能直接或间接地影响地-气辐射平衡,进而对全球气候产生重大影响.目前,关于烟炱气溶胶光学性质的研究已经成为气溶胶科学中的前沿和热点课题,对其进行系统的实验室研究可以为更好地分析和认识外场观测结果提供基础,并为数值模式模拟研究提供准确的基本参数.本文简要介绍了烟炱气溶胶的来源和分类,重点阐述了其气候效应、光学性质的影响因素以及相关的实验室研究,并对相应的研究手段进行了总结.在此基础上还提出了当前主要的科学问题,同时也对未来这一重要领域的研究前景进行了展望.

English Abstract

参考文献 (87)

返回顶部

目录

/

返回文章
返回