重金属在环境中的化学形态分析研究进展

章骅, 何品晶, 吕凡, 邵立明. 重金属在环境中的化学形态分析研究进展[J]. 环境化学, 2011, 30(1): 130-137.
引用本文: 章骅, 何品晶, 吕凡, 邵立明. 重金属在环境中的化学形态分析研究进展[J]. 环境化学, 2011, 30(1): 130-137.
ZHANG Hua, HE Pinjing, LU Fan, SHAO Liming. A REVIEW ON THE METHODS FOR INVESTIGATING HEAVY METAL SPECIATION IN ENVIRONMENTAL CHEMISTRY[J]. Environmental Chemistry, 2011, 30(1): 130-137.
Citation: ZHANG Hua, HE Pinjing, LU Fan, SHAO Liming. A REVIEW ON THE METHODS FOR INVESTIGATING HEAVY METAL SPECIATION IN ENVIRONMENTAL CHEMISTRY[J]. Environmental Chemistry, 2011, 30(1): 130-137.

重金属在环境中的化学形态分析研究进展

  • 基金项目:

    国家自然科学基金青年基金项目(20807031)

    973计划项目(2011CB201504)

    863计划课题(2007AA061304)资助.

A REVIEW ON THE METHODS FOR INVESTIGATING HEAVY METAL SPECIATION IN ENVIRONMENTAL CHEMISTRY

  • Fund Project:
  • 摘要: 重金属在环境中的形态与迁移转化决定了其污染风险和生物有效性.本文从影响重金属形态的主要环境条件和结合物特性出发,分析了重金属在环境中与有机物、无机矿物质等的交互作用机理,对目前重金属形态分析的主要研究方法(化学提取、电化学、分子尺度仪器检测技术、模型计算等)展开综述与讨论.
  • 加载中
  • [1] Merdy P, Huclier S, Koopal L K. Modeling metal-particle interactions with an emphasis on natural organic matter [J]. Environmental Science & Technology, 2006, 40(24): 7459-7466
    [2] Cancès B, Ponthieu M, Castrec-Rouelle M, et al. Metal ions speciation in a soil and its solution: experimental data and model results [J]. Geoderma, 2003, 113(3/4): 341-355
    [3] Weng L, Temminghoff E J M, Van Riemsdijk W H. Contribution of individual sorbents to the control of heavy metal activity in sandy soil [J]. Environmental Science & Technology, 2001, 35(22): 4436-4443
    [4] stman M, Wahlberg O, Mrtensson A. Leachability and metal-binding capacity in ageing landfill material [J]. Waste Management, 2008, 28(1): 142-150
    [5] Chen X, Wright J V, Conca J L, et al. Effects of pH on heavy metal sorption on mineral apatite [J]. Environmental Science & Technology, 1997, 31(3): 624-631
    [6] Dijkstra J J, Meeussen J C L, Comans R N J. Leaching of heavy metals from contaminated soils: an experimental and modeling study [J]. Environmental Science & Technology, 2004, 38(16): 4390-4395
    [7] Yang J Y, Yang X E, He Z L, et al. Effects of pH, organic acids, and inorganic ions on lead desorption from soils [J]. Environmental Pollution, 2006, 143(1): 9-15
    [8] Zhang H, He P J, Shao L M, et al. Leaching behavior of heavy metals from municipal solid waste incineration bottom ash and its geochemical modeling [J]. Journal of Material Cycles and Waste Management, 2008, 10(1): 7-13
    [9] Jing C Y, Meng X G, Korfiatis G P. Lead leachability in stabilized/solidified soil samples evaluated with different leaching tests [J]. Journal of Hazardous Materials, 2004, 114(1/3): 101-110
    [10] Weng L, Van Riemsdijk W H, Koopal L K, et al. Adsorption of humic substances on goethite: comparison between humic acids and fulvic acids [J]. Environmental Science & Technology, 2006, 40(24): 7494-7500
    [11] Dawson J J C, Billett M F, Hope D. Diurnal variations in the carbon chemistry of two acidic peatland streams in north-east Scotland [J]. Freshwater Biology, 2001, 46(10): 1309-1322
    [12] Maberly S C. Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake [J]. Freshwater Biology, 1996, 35(3): 579-598
    [13] Johnson D B, Hallberg K B. Acid mine drainage remediation options: a review [J]. Science of the Total Environment, 2005, 338(1/2): 3-14
    [14] Kllqvist T, Carlberg G E, Kringstad A. Ecotoxicological characterization of industrial wastewater-sulfite pulp mill with bleaching [J]. Ecotoxicology and Environmental Safety, 1989, 18(3): 321-336
    [15] Milne C J, Kinniburgh D G, Tipping E. Generic NICA-Donnan model parameters for proton binding by humic substances [J]. Environmental Science & Technology, 2001, 35(10): 2049-2059
    [16] Flyhammar P, H kansson K. The release of heavy metals in stabilized MSW by oxidation [J]. Science of the Total Environment, 1999, 243/244: 291-303
    [17] Bilgili M S, Demir A, nce M, et al. Metal concentrations of simulated aerobic and anaerobic pilot scale landfill reactors [J]. Journal of Hazardous Materials, 2007, 145(1/2): 186-194
    [18] He P J, Xiao Z, Shao L M, et al. In situ distributions and characteristics of heavy metals in full-scale landfill layers [J]. Journal of Hazardous Materials, 2006, 137(3): 1385-1394
    [19] Yu K C, Tsai L J, Chen S H, et al. Chemical binding of heavy metals in anoxic river sediments [J]. Water Research, 2001, 35(17): 4086-4094
    [20] Tipping E. Modelling Al competition for heavy metal binding by dissolved organic matter in soil and surface waters of acid and neutral pH [J]. Geoderma, 2005, 127(3/4): 293-304
    [21] van Riemsdijk W H, Koopal L K, Kinniburgh D G, et al. Modeling the interactions between humics, ions, and mineral surfaces [J]. Environmental Science & Technology, 2006, 40(24): 7473-7480
    [22] Gustafsson J P, Pechov P. Modeling metal binding to soils: the role of natural organic matter [J]. Environmental Science & Technology, 2003, 37(12): 2767-2774
    [23] Dzombak D A, Morel F M M. Surface complexation modeling: hydrous ferric oxide [M]. New York: John Wiley & Sons, Inc., 1990: 89-93
    [24] Baumann T, Fruhstorfer P, Klein T, et al. Colloid and heavy metal transport at landfill sites in direct contact with groundwater [J]. Water Research, 2006, 40(14): 2776-2786
    [25] Jia Y, Demopoulos G P, Adsorption of arsenate onto ferrihydrite from aqueous solution: influence of media (sulfate vs nitrate), added gypsum, and pH alteration [J]. Environmental Science & Technology, 2005, 39(24): 9523-9527
    [26] Hizal J, Apak R. Modeling of cadmium(Ⅱ) adsorption on kaolinite-based clays in the absence and presence of humic acid [J]. Applied Clay Science, 2006, 32(3/4): 232-244
    [27] Pagnanelli F, Bornoroni L, Moscardini E, et al. Non-electrostatic surface complexation models for protons and lead(Ⅱ) sorption onto single minerals and their mixture [J]. Chemosphere, 2006, 63(7): 1063-1073
    [28] Qu X, He P J, Shao L M, et al. Heavy metals mobility in full-scale bioreactor landfill: Initial stage [J]. Chemosphere, 2008, 70(5): 769-777
    [29] Halim C E, Short S A, Scott J A. Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC [J]. Journal of Hazardous Materials, 2005, 125(1/3): 45-61
    [30] Mavropoulos E, Rossi A M, Costa A M. Studies on the mechanisms of lead immobilization by hydroxyapatite [J]. Environmental Science & Technology, 2002, 36(7): 1625-1629
    [31] Linge K L. Methods for investigating trace element binding in sediments [J]. Critical Reviews in Environmental Science and Technology, 2008, 38(3): 165-196
    [32] Apul D S, Gardner K H, Eighmy T T, et al. Simultaneous application of dissolution/precipitation and surface complexation/surface precipitation modeling to contaminant leaching [J]. Environmental Science & Technology, 2005, 39(15): 5736-5741
    [33] Meima J A, Comans R N J. Application of surface complexation/precipitation modeling to contaminant leaching from weathered municipal solid waste incinerator bottom ash [J]. Environmental Science & Technology, 1998, 32(5): 688-693
    [34] Peld M, T nsuaadu K, Bender V. Sorption and desorption of Cd2+ and Zn2+ ions in apatite-aqueous systems [J]. Environmental Science & Technology, 2004, 38(21): 5626-5631
    [35] Rouff A A, Elzinga E J, Reeder R J, et al. X-ray absorption spectroscopic evidence for the formation of Pb(Ⅱ) inner-sphere adsorption complexes and precipitates at the calcite-water interface [J]. Environmental Science & Technology, 2004, 38(6): 1700-1707
    [36] Chaturvedi P K, Seth C S, Misra V. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite) [J]. Chemosphere, 2006, 64(7): 1109-1114
    [37] Koopal L K, Saito T, Pinheiro J P, et al. Ion binding to natural organic matter: general considerations and the NICA-Donnan model [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 265(1/3): 40-54
    [38] Sahuquillo A, Rigol A, Rauret G. Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments [J]. Trends in Analytical Chemistry, 2003, 22(3): 152-159
    [39] Margui E, Salvad V, Queralt I, et al. Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes [J]. Analytica Chimica Acta, 2004, 524(1/2): 151-159
    [40] Silveira M L, Alleoni L R F, O'Connor G, et al. Heavy metal sequential extraction methods-A modification for tropical soils [J]. Chemosphere, 64(11): 1929-1938
    [41] Hass A, Fine P. Sequential selective extraction procedures for the study of heavy metals in soils, sediment, and waste materials-a critical review [J]. Critical Reviews in Environmental Science and Technology, 2010, 40(5): 365-399
    [42] Feldmann J, Salaun P, Lombi E. Critical review perspective: elemental speciation analysis methods in environmental chemistry-moving towards methodological integration [J]. Environmental Chemistry, 2009, 6(4): 275-289
    [43] Filgueiras A V, Lavilla I, Bendicho C. Chemical sequential extraction for metal partitioning in environmental solid samples [J]. Journal of Environmental Monitoring, 2002, 4(6): 823-857
    [44] Lenz M, van Hullebusch E D, Farges F, et al. Selenium speciation assessed by X-ray absorption spectroscopy of sequentially extracted anaerobic biofilms [J]. Environmental Science & Technology, 2008, 40(20): 7587-7593
    [45] Yin Y G, Liu J F, He B, et al. Mercury speciation by a high performance liquid chromatography-atomic fluorescence spectrometry hyphenated system with photo-induced chemical vapour generation reagent in the mobile phase [J]. Microchimica ACTA, 2009, 167(3/4): 289-295
    [46] Harrington C F, Clough R, Hansen H R, et al. Atomic spectrometry update. Elemental speciation [J]. Journal of Analytical Atomic Spectrometry. 2010, 25(8): 1185-1216
    [47] ygard J K, Gjengedal E, Ryset O. Size charge fractionation of metals in municipal solid waste landfill leachate [J]. Water Research, 2007, 41(1): 47-54
    [48] Jensen D L, Ledin A, Christensen T H. Speciation of heavy metals in landfill-leachate polluted groundwater [J]. Water Research, 1999, 33(11): 2642-2650
    [49] Baun D L, Christensen T H. Speciation of heavy metals in landfill leachate: a review [J]. Waste Management & Research, 2004, 22(1): 3-23
    [50] Quan G, Yan J. Binding constants of lead by humic and fulvic acids studied by anodic stripping square wave voltammetry [J]. Russian Journal of Electrochemistry, 2010, 46(1): 90-94
    [51] Christl I, Metzger A, Heidmann I, et al. Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding [J]. Environmental Science & Technology, 2005, 39(14): 5319-5326
    [52] He P J, Zhang H, Shao L M, et al. Leaching of carbonated air pollution control residues using compliance leaching tests [J]. Journal of Environmental Quality, 2006, 35(2): 442-449
    [53] Milne C J, Kinniburgh D G, Van Riemsdijk W H, et al. Generic NICA-Donnan model parameters for metal-ion binding by humic substances [J]. Environmental Science & Technology, 2003, 37(5): 958-971
    [54] Dijkstra J J, Van Zomeren A, Meeussen J C L, et al. Effect of accelerated aging of MSWI bottom ash on the leaching mechanisms of copper and molybdenum [J]. Environmental Science & Technology, 2006, 40(14): 4481-4487
    [55] Eighmy T T, Eusden J D, Krzanowski J E, et al. Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash [J]. Environmental Science & Technology, 1995, 29(3): 629-646
    [56] Astrup T, Dijkstra J J, Comans R N J, et al. Geochemical modeling of leaching from MSMI air-pollution-control residues [J]. Environmental Science & Technology, 2006, 40(11): 3551-3557
    [57] Kyziol J, Twardowska I, Schmitt-Kopplin Ph, The role of humic substances in chromium sorption onto natural organic matter (peat) [J]. Chemosphere, 2006, 63(11): 1974-1982
    [58] Rey-Castro C, Mongin S, Huidobro C, et al. Effective affinity distribution for the binding of metal ions to generic fulvic acid in natural waters [J]. Environmental Science & Technology, 2009, 43(19): 7184-7191
    [59] Hiemstra T, van Riemsdijk W H. A surface structural approach to ion adsorption: the charge distribution (CD) model [J]. Journal of Colloid and Interface Science, 1996, 179(2): 488-508
    [60] Shtepenkom O L, Hills C D, Coleman N J, et al. Characterization and preliminary assessment of a sorbent produced by accelerated mineral carbonation [J]. Environmental Science & Technology, 2005, 39(1): 345-354
    [61] Tian S, Yu M, Wang W, et al. Investigating the speciation of copper in secondary fly ash by X-ray absorption spectroscopy [J]. Environmental Science & Technology, 2009, 43(24): 9084-9088
    [62] 马礼敦, 杨福家, 同步辐射应用概论(第二版)[M]. 上海: 复旦大学出版社, 2005: 149-191
    [63] Hsiao M C, Wang H P, Yang Y W. EXAFS and XANES studies of copper in a solidified fly ash [J]. Environmental Science & Technology, 2001, 35(12): 2532-2535
    [64] Jing C, Liu S, Korfiatis G P, et al. Leaching behavior of Cr(Ⅲ) in stabilized/solidified soil [J]. Chemosphere, 2006, 64(3): 379-385
    [65] Camerani Pinzani M C, Somogyi A, Simionovici A S, et al. Direct determination of cadmium speciation in municipal solid waste fly ashes by synchrotron radiation induced μ-X-ray fluorescence and μ-X-ray absorption spectroscopy [J]. Environmental Science & Technology, 2002, 36(14): 3165-3169
    [66] Gustafsson J P, Persson I, Kleja D B, et al. Binding of iron(Ⅲ) to organic soils: EXAFS spectroscopy and chemical equilibrium modeling [J]. Environmental Science & Technology, 2007, 41(4): 1232-1237
    [67] Flogeac K, Guillon E, Aplincourt M. Surface complexation of copper(Ⅱ) on soil particles: EPR and XAFS studies [J]. Environmental Science & Technology, 2004, 38(11): 3098-3103
    [68] Khare N, Hesterberg D, Martin J D. XANES investigation of phosphate sorption in single and binary systems of iron and aluminum oxide minerals [J]. Environmental Science & Technology, 2005, 39(7): 2152-2160
    [69] Frenkel A I, Korshin G V, Ankudinov A L. XANES study of Cu2+-binding sites in aquatic humic substances [J]. Environmental Science & Technology, 2000, 34(11): 2138-2142
    [70] Chaspoul F R, Le Droguene M F, Barban G, et al. A role for adsorption in lead leachability from MSWI bottom ash [J]. Waste Management, 2008, 28(8): 1324-1330
  • 加载中
计量
  • 文章访问数:  2575
  • HTML全文浏览数:  2474
  • PDF下载数:  538
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-08-30
章骅, 何品晶, 吕凡, 邵立明. 重金属在环境中的化学形态分析研究进展[J]. 环境化学, 2011, 30(1): 130-137.
引用本文: 章骅, 何品晶, 吕凡, 邵立明. 重金属在环境中的化学形态分析研究进展[J]. 环境化学, 2011, 30(1): 130-137.
ZHANG Hua, HE Pinjing, LU Fan, SHAO Liming. A REVIEW ON THE METHODS FOR INVESTIGATING HEAVY METAL SPECIATION IN ENVIRONMENTAL CHEMISTRY[J]. Environmental Chemistry, 2011, 30(1): 130-137.
Citation: ZHANG Hua, HE Pinjing, LU Fan, SHAO Liming. A REVIEW ON THE METHODS FOR INVESTIGATING HEAVY METAL SPECIATION IN ENVIRONMENTAL CHEMISTRY[J]. Environmental Chemistry, 2011, 30(1): 130-137.

重金属在环境中的化学形态分析研究进展

  • 1. 同济大学, 固体废物处理与资源化研究所, 上海, 200092
基金项目:

国家自然科学基金青年基金项目(20807031)

973计划项目(2011CB201504)

863计划课题(2007AA061304)资助.

摘要: 重金属在环境中的形态与迁移转化决定了其污染风险和生物有效性.本文从影响重金属形态的主要环境条件和结合物特性出发,分析了重金属在环境中与有机物、无机矿物质等的交互作用机理,对目前重金属形态分析的主要研究方法(化学提取、电化学、分子尺度仪器检测技术、模型计算等)展开综述与讨论.

English Abstract

参考文献 (70)

返回顶部

目录

/

返回文章
返回