有机污染物生物有效性的评价方法

陈珊, 许宜平, 王子健. 有机污染物生物有效性的评价方法[J]. 环境化学, 2011, 30(1): 158-164.
引用本文: 陈珊, 许宜平, 王子健. 有机污染物生物有效性的评价方法[J]. 环境化学, 2011, 30(1): 158-164.
CHEN Shan, XU Yiping, WANG Zijian. METHODS FOR EVALUATING THE BIOAVAILABILITY OF ORGANIC CONTAMINANTS IN ENVIRONMENTS[J]. Environmental Chemistry, 2011, 30(1): 158-164.
Citation: CHEN Shan, XU Yiping, WANG Zijian. METHODS FOR EVALUATING THE BIOAVAILABILITY OF ORGANIC CONTAMINANTS IN ENVIRONMENTS[J]. Environmental Chemistry, 2011, 30(1): 158-164.

有机污染物生物有效性的评价方法

  • 基金项目:

    水体污染控制与治理重大专项(2009ZX07527-005)

    国家自然科学基金(20737003,40801204)资助.

METHODS FOR EVALUATING THE BIOAVAILABILITY OF ORGANIC CONTAMINANTS IN ENVIRONMENTS

  • Fund Project:
  • 摘要: 环境中有机污染物的生物有效性评价对生物修复、生态毒性和环境风险研究有着重要的意义.本文概括了影响有机污染物生物有效性的因素,综述了近年来有机污染物生物有效性评价方法的发展与应用,并对该领域的研究趋势进行了展望.
  • 加载中
  • [1] Bobas F A F C, Zhang X. Interactions of organic chemicals with particulate and dissolved organic matter in the aquatic environment.//Hamelink J, Landrum P F, Eds., Bioavailability: Physical, Chemical and Biological Interactions. CRC Press, Boca Raton FL, 1994: 83-90
    [2] Erickson R J, Bill T D, Clark J R, et al. Synopsis of discussion session on physicochemical factors affecting toxicity. //Hamelink J, Landrum P F, Eds.,Bioavailability: Physical, Chemical and Biological Interactions. CRC Press, Boca Raton FL, 1994: 31-38
    [3] Scientific principles of soil hazard assessment of substances, Technical Report No. 84. European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), Brussels, Belgium, 2002: 24-26
    [4] De Zwart D. Impact of toxicants on species composition of aquatic communities: concordance of predictions and field observations. University of Amsterdam, 2005
    [5] Sprague J B. Factors that modify toxicity. //Petrocelli S R ed., Fundamentals of Aquatic Toxicology, Hemisphere Publishing Corporation. Washington DC, 1984: 124-163
    [6] Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry, 2nd ed[M]. Wiley, NY, 2003
    [7] Mayer F L J, Marking L L, Bill T D, et al. Physicochemical factors affecting toxicity in freshwater: hardness, pH and temperature.//Hamelink J, Landrum P F, Eds., Bioavailability: Physical, Chemical and Biological Interactions. CRC Press, Boca Raton FL, 1994: 5-22
    [8] 吴丰昌.天然有机质及其与污染物的相互作用[M].北京:科学出版社,2010:274-289
    [9] Engebretson R R, von Wandruszka R. Micro-organization in dissolved humic acids[J]. Environ Sci Technol, 1994, 28(11): 1934-1941
    [10] Sierra M M D, Rauen T G, Tormen L, et al. Evidence from surface tension and fluorescence data of a pyrene-assisted micelle-like assemblage of humic substances[J]. Water Res, 2005, 39(16): 3811-3818
    [11] Gauthier T D, Seitz W R, Grant C L. Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values[J]. Environ Sci Technol, 1987, 21(3): 243-248
    [12] Pan B, Ghosh S, Xing B. Dissolved organic matter conformation and its interaction with pyrene as affected by water chemistry and concentration[J]. Environ Sci Technol, 2008, 42(5): 1594-1599
    [13] Weston D P, Mayer L M. Comparison of in vitro digestive fluid extraction and traditional in vivo approaches as measures of polycyclic aromatic hydrocarbon bioavailability from sediments[J]. Environ Toxicol Chem, 1998, 17(5): 830-840
    [14] Pignatello J J, Xing B. Mechanisms of slow sorption of organic chemicals to natural particles[J]. Environ Sci Technol, 1996, 30(1): 1-11
    [15] Steinberg S M, Pignatello J J, Sawhney B L. Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores[J]. Environ Sci Technol, 1987, 21(12): 1201-1208
    [16] Carroll K M, Harkness M R, Bracco A A, et al. Application of a permeant/polymer diffusional model to the desorption of polychlorinated biphenyls from Hudson River sediments[J]. Environ Sci Technol, 1994, 28(2): 253-258
    [17] Pignatello J J. Slowly reversible sorption of aliphatic halocarbons in soils. I. Formation of residual fractions[J]. Environ Toxicol Chem, 1990, 9(9): 1107-1115
    [18] Ehlers L J, Luthy R G. Contaminant bioavailability in soil and sediment[J]. Environ Sci Technol, 2003, 37(15): 265A-304A
    [19] Geyer H J, Scheunert I, Korte F. Relationship between the lipid content of fish and their bioconcentration potential of 1,2,4-trichlorobenzene[J]. Chemosphere, 1985, 14(5): 545-555
    [20] Verhaar H J M, Busser F J M, Hermens J L M. Surrogate parameter for the baseline toxicity content of contaminated water: simulating the bioconcentration of mixtures of pollutants and counting molecules[J]. Environ Sci Technol, 1995, 29(3): 726-734
    [21] Blaauboer B J. The applicability of in vitro-derived data in hazard identification and characterisation of chemicals[J]. Environ Toxicol Phar, 2002, 11(3): 213-225
    [22] 王海黎,陶澍.生物标志物在水环境研究中的应用[J].中国环境科学,1999,19(5): 421-426
    [23] Oikari A, Fragoso N, Lepp, et al. Bioavailability to juvenile rainbow trout (Oncorynchus mykiss) of retene and other mixed-function oxygenase-active compounds from sediments[J]. Environ Toxicol Chem, 2002, 21(1): 121-128
    [24] Koganti A, Spina D A, Rozett K, et al. Studies on the applicability of biomarkers in estimating the systemic bioavailability of polynuclear aromatic hydrocarbons from manufactured gas plant tar-contaminated soils[J]. Environ Sci Technol, 1998, 32(20): 3104-3112
    [25] Sijm D, Kraaij R, Belfroid A. Bioavailability in soil or sediment: exposure of different organisms and approaches to study it[J]. Environ Pollut, 2000, 108 (1): 113-119
    [26] DiToro D M, Zabra C S, Hansen D J, et al. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning[J]. Environ Toxicol Chem, 1991, 10(12): 1541-1583
    [27] Sijm D T H M, van der Linde A. Size-dependent bioconcentration kinetics of hydrophobic organic chemicals in fish based on diffusive mass transfer and allometric relationships[J]. Environ Sci Technol, 1995, 29(11): 2769-2777
    [28] UrrestarazuRamos E, Vaes W H J, Verhaar H J M, et al. Quantitative structure-activity relationships for the aquatic toxicity of polar and nonpolar narcotic pollutants[J]. J Chem Inf Model, 1998, 38(5): 845-852
    [29] Vaes W H J, Urrestarazu Ramos E, Verhaar H J M, et al. Understanding and estimating membrane/water partition coefficients: approaches to derive quantitative structure property relationships[J]. Chem Res Toxicol, 1998, 11(8): 847-854
    [30] Constantinou E, Seigneur C. A mathematical model for multimedia health risk assessment[J]. Environ Softw, 1993, 8(4): 231-246
    [31] 胡霞林,刘景富,卢士燕,等.环境污染物的自由溶解态浓度与生物有效性[J].化学进展,2009,21(2/3):514

    -523

    [32] Hatzinger P B, Alexander M. Effect of aging of chemicals in soil on their biodegradability and extractability[J]. Environ Sci Technol, 1995, 29(2): 537-545
    [33] Hawthorne S B, Galy A, Schmitt V, et al. Effect of SFE flow rate on extraction rates: classifying sample extraction behavior[J]. Anal Chem, 1995, 67(15): 2723-2732
    [34] Hermens J L M, Heringa M B, ter Laak T L. Bioavailability in dose and exposure assessment of organic contaminants in (Eco)toxicology[J]. J Toxicol Env Heal. B, 2006, 70(9/10): 727-730
    [35] Schirmer K, Tanneberger K, Kramer N I, et al. Exploring the role of dosing procedure and chemical properties in in vitro assays using a fish gill cell line[J]. Comp Biochem Physiol B: Biochem Mol Biol, 2009, 153(2, Supplement 1): S89-S89
    [36] 柯润辉.半渗透膜被动式采样技术模拟生物监测水中疏水性有机污染物[M].中国科学院生态环境研究中心博士学位论文,2007
    [37] Poerschmann J, Zhang Z, Kopinke F D, et al. Solid phase microextraction for determining the distribution of chemicals in aqueous matrices[J]. Anal Chem, 1997, 69(4): 597-600
    [38] Parkerton T F, Stone M A, Letinski D J. Assessing the aquatic toxicity of complex hydrocarbon mixtures using solid phase microextraction[J]. Toxicol Lett, 2000, 112-113(15): 273-282
    [39] Huckins J N, Tubergen M W, Manuweera G K. Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential[J]. Chemosphere, 1990, 20(5): 533 -552
    [40] Arthur C L, Pawliszyn J. Solid Phase Microextraction with thermal desorption using fused silica optical fibers[J]. Anal Chem, 1990, 62(19): 2145-2148
    [41] Psillakis E, Kalogerakis N. Developments in liquid-phase microextraction[J]. Trends Anal Chem, 2003, 22(9): 565-574
    [42] Kraaij R, Mayer P, Busser F J M, et al. Measured pore-water concentrations make equilibrium partitioning work-a data analysis[J]. Environ Sci Technol, 2003, 37(2): 268-274
    [43] Verbruggen E M J, Vaes W H J, Parkerton T F, et al. Polyacrylate-coated SPME fibers as a tool to simulate body residues and target concentrations of complex organic mixtures for estimation of baseline toxicity[J]. Environ Sci Technol, 2000, 34(2): 324-331
    [44] You J, Landrum P F, Lydy M J. Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants[J]. Environ Sci Technol, 2006, 40(20): 6348-6353
    [45] Tang J X, Robertson B K. Alexander M. Chemical-extraction methods to estimate bioavailability of DDT, DDE, and DDD in soil[J]. Environ Sci Technol, 1999, 33(23): 4346-4351
    [46] Xu Y, Wang Z, Ke R, et al. Accumulation of organochlorine pesticides from water using triolein embedded cellulose acetate membranes[J]. Environ Sci Technol, 2005, 39(4): 1152-1157
    [47] Ke R, Wang Z, Huang S, et al. Accurate quantification of freely dissolved organochlorine pesticides in water in the presence of dissolved organic matter using triolein-embedded cellulose acetate membrane[J]. Anal Bioanal Chem, 2007, 387(8): 2871-2879
    [48] Ke R, Luo J, Sun L, et al. Predicting bioavailability and accumulation of organochlorine pesticides by japanese medaka in the presence of humic acid and natural organic matter using passive sampling membranes[J]. Environ Sci Technol, 2007, 41(19): 6698-6703
    [49] Chen S, Ke R, Zha J, et al. Influence of humic acid on bioavailability and toxicity of benzofluoranthene to Japanese medaka[J]. Environ Sci Technol, 2008, 42(24): 9431-9436
    [50] Yang W, Spurlock F, Liu W, et al. Effects of dissolved organic matter on permethrin bioavailability to Daphnia species[J]. J Agric Food Chem, 2006, 54(11): 3967-3972
    [51] Escher B, Hermens J L M. Internal exposure: linking bioavailability to effects[J]. Environ Sci Technol, 2004, 38(23): 455A-462A
    [52] Franke C. How meaningful is the bioconcentration factor for risk assessment? [J]. Chemosphere, 1996, 32(10): 1897-1905
    [53] Bartell S M, LaKind J S, Moore J A, et al. Bioaccumulation of hydrophobic organic chemicals by aquatic organisms: a workshop summary[J]. Int J Environ Pollut, 1998, 9(1): 3-25
    [54] Gourlay C, Miège C, Noir A, et al. How accurately do semi-permeable membrane devices measure the bioavailability of polycyclic aromatic hydrocarbons to Daphnia magna?[J]. Chemosphere 2005, 61(11): 1734-1739
    [55] Nas K, Axelman J, Naf C, et al. Role of soot carbon and other carbon matrices in the distribution of PAHs among particles, DOC, and the dissolved phase in the effluent and recipient waters of an aluminum reduction plant[J]. Environ Sci Technol, 1998, 32(12): 1786-1792
    [56] Chin Y P, Aiken G R, Danielsen K M. Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity[J]. Environ Sci Technol, 1997, 31(6): 1630-1635
    [57] Yu Z, Sharma S, Huang W. Differential roles of humic acid and particulate organic matter in the equilibrium sorption of atrazine by soils[J]. Environ Toxicol Chem, 2006, 25(8): 1975-1983
    [58] Cornelissen G, Breedveld G D, Kalaitzidis S, et al. Strong sorption of native PAHs to pyrogenic and unburned carbonaceous geosorbents in sediments[J]. Environ Sci Technol, 2006, 40(4): 1197-1203
  • 加载中
计量
  • 文章访问数:  2506
  • HTML全文浏览数:  2286
  • PDF下载数:  705
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-07-02
陈珊, 许宜平, 王子健. 有机污染物生物有效性的评价方法[J]. 环境化学, 2011, 30(1): 158-164.
引用本文: 陈珊, 许宜平, 王子健. 有机污染物生物有效性的评价方法[J]. 环境化学, 2011, 30(1): 158-164.
CHEN Shan, XU Yiping, WANG Zijian. METHODS FOR EVALUATING THE BIOAVAILABILITY OF ORGANIC CONTAMINANTS IN ENVIRONMENTS[J]. Environmental Chemistry, 2011, 30(1): 158-164.
Citation: CHEN Shan, XU Yiping, WANG Zijian. METHODS FOR EVALUATING THE BIOAVAILABILITY OF ORGANIC CONTAMINANTS IN ENVIRONMENTS[J]. Environmental Chemistry, 2011, 30(1): 158-164.

有机污染物生物有效性的评价方法

  • 1. 中国科学院生态环境研究中心环境水质学国家重点实验室, 北京, 100085
基金项目:

水体污染控制与治理重大专项(2009ZX07527-005)

国家自然科学基金(20737003,40801204)资助.

摘要: 环境中有机污染物的生物有效性评价对生物修复、生态毒性和环境风险研究有着重要的意义.本文概括了影响有机污染物生物有效性的因素,综述了近年来有机污染物生物有效性评价方法的发展与应用,并对该领域的研究趋势进行了展望.

English Abstract

参考文献 (58)

返回顶部

目录

/

返回文章
返回