[1]
|
Cao J, Bai X X, Zhao Y, et al. The Relationship of Fluorosis and Brick Tea Drinking in Chinese Tibetans[J]. Environmental Health Perspectives, 1996, 104(12): 1340-1343
|
[2]
|
陆英, 刘仲华. 茶叶中氟的研究进展[J]. 吉首大学学报: 自然科学版, 2004,25(4): 84-88
|
[3]
|
谢忠雷, 邱立民, 董德明, 等. 茶叶氟含量及其影响因素[J]. 吉林大学自然科学学报, 2001 (2): 81-84
|
[4]
|
郜红建, 金友前, 董艳红, 等. 水溶性有机质对茶园土壤氟形态的影响[J].安徽农业大学学报,2012,39(3):389-393
|
[5]
|
李张伟. 粤东凤凰茶区茶叶和土壤氟含量状况调查及影响因素研究[J].土壤通报,2010,41(5):1222-1225
|
[6]
|
Galina A, Evdokinova. Fluorine in the Soils of the White Sea Basin and Bioindication of pollution[J]. Chemosphere, 2001, 42 (1): 35-43
|
[7]
|
Strobel B W. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution:A review[J].Geoderma, 2001, 99(3/4): 169-198
|
[8]
|
丁永祯, 李志安, 邹碧.土壤低分子量有机酸及其生态功能[J].土壤, 2005, 37 (3): 243-250
|
[9]
|
陆建良, 梁月荣. 茶树根系特性与茶园管理[J]. 茶叶科学简报, 1994, (1): 1-5
|
[10]
|
张福锁, 曹一平. 根际动态过程与植物营养[J]. 土壤学报,1992, 29 (3): 239-250
|
[11]
|
杨杰文, 钟来元, 郭荣发. pH和有机酸对氟溶出砖红壤中铝离子的影响[J].环境科学研究,2011,24(2):216-221
|
[12]
|
Xu R K, Zhao A Z, Ji G L. Effect of low-molecular-weight organic anions on surface charge of variable charge soils[J].Journal of Colloid and Interface Science,2003,264(2):322-326
|
[13]
|
胡红青, 贺纪正, 李学垣.多种有机酸共存对可变电荷土壤吸附磷的影响[J].植物营养与肥料学报,1999, 5(2): 122-128
|
[14]
|
沈阿林, 李学垣, 吴受容.土壤中低分子量有机酸在物质循环中的作用[J].植物营养与肥料学报,1997,3(4):363-369
|
[15]
|
徐仁扣, 王亚云, 赵安珍. 低分子量有机酸对可变电荷土壤吸附性氟解吸的影响[J].土壤,2003, 35 (5): 392-396
|
[16]
|
|
[17]
|
|
[18]
|
王代长, 蒋新, 贺纪正, 等. H+和有机酸对可变电荷土壤铝释放的动力学研究[J]. 地球化学,2006,35(6):651-659
|
[19]
|
张显晨, 郜红建, 张正竹, 等. 铝对氟在茶树体内吸收与分配的影响[J].食品科学,2013,34(5):147-150
|
[20]
|
Gao H J, Zhang Z Z, Wan X C. Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants[J].Environmental Geochemistry and Health,2012,34(5):551-562
|
[21]
|
王瑾,李小坤,鲁剑巍,等. 不同酸提取条件下几种含钾矿物中钾释放动力学研究[J].中国农业科学, 2012,45(22):4643-4650
|
[22]
|
徐仁扣, 季国亮. 用氟离子电极测定土壤溶液中无机单核铝的实验验证[J].环境化学,1998,17(1):72-78
|
[23]
|
徐仁扣, 季国亮. pH对酸性土壤中铝的溶出和铝离子形态分布的影响[J].土壤学报,1998,35(2):162-171
|
[24]
|
刘伟, 尚庆昌. 长春地区不同类型土壤的缓冲性及其影响因素[J].吉林农业大学学报, 2001, 23(3): 78-82
|
[25]
|
Arnesen A K M. Fluoride solubility in dust emission from an aluminum smelter[J]. Journal of Environmental Quality, 1997, 26: 1564-1570
|
[26]
|
谢忠雷, 邱立民, 董德明, 等. 茶叶中氟含量及其影响因素[J]. 吉林大学自然科学学报, 2001(2): 81-84
|
[27]
|
喻艳红, 张桃林, 李清曼, 等. pH、离子强度和介电常数对低分子量有机酸在红壤中吸附行为的影响[J].土壤, 2010, 42 (3): 479-484
|
[28]
|
熊明彪, 雷孝章, 田应兵, 等. 钾离子在土壤中吸附和解吸动力学研究进展[J].生态环境,2003,12(1):115-118
|
[29]
|
赵振华, 吴玉, 蒋新, 等. 低分子量有机酸对红壤中硫丹释放动力学的影响[J].环境科学,2009,30(10):3077-3081
|
[30]
|
Fung K F, Wong M H. Effects of soil pH on the Uptake of Al,F and other elements by tea plants[J].Journal of the Science of Food and Agriculture,2002,82:146-152
|
[31]
|
Stevens D P, McLaughlin M J, Alston A M. Phytotoxicity of hydrogen fluoride and fluoroborate and their uptake from solution culture by lycopersicon esculentum and avenasativa[J].Plant and Soil,1998,200:175-184
|
[32]
|
Anetta Zioła-Frankowska, Marcin Frankowski, Jerzy Siepak. Development of a new analytical method for online simultaneous qualitative determination of aluminium (free aluminium ion, aluminium-fluoride complexes) by HPLC-FAAS[J].Talanta,2009,78:623-630
|
[33]
|
Ding R X, Huang X. Biogeochemical cycle aluminum and fluoride in tea garden soil system and its relationship to soil acidification[J]. Acta Pedolngica Sinica, 1991, 28(3): 229-236.
|