Potts S G, Imperatriz-Fonseca V, Ngo H T, et al. Safeguarding pollinators and their values to human well-being [J]. Nature, 2016, 540(7632): 220-229
Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? [J]. Oikos, 2011, 120(3): 321-326
Potts S G, Biesmeijer J C, Kremen C, et al. Global pollinator declines: Trends, impacts and drivers [J]. Trends in Ecology & Evolution, 2010, 25(6): 345-353
李定银, 郅军锐, 张涛, 等. 乙基多杀菌素和乙虫腈对西花蓟马解毒酶和乙酰胆碱酯酶活性的影响[J]. 应用昆虫学报, 2020, 57(6): 1385-1393 Li D Y, Zhi J R, Zhang T, et al. Effects of spinetoram and ethiprole on detoxification enzyme and acetylcholin esterase activity in Frankliniella occidentalis (Pergande) [J]. Chinese Journal of Applied Entomology, 2020, 57(6): 1385-1393 (in Chinese)
Punyawattoe P, Han Z J, Sriratanasak W, et al. Ethiprole resistance in Nilaparvata lugens (Hemiptera: Delphacidae): Possible mechanisms and cross-resistance [J]. Applied Entomology and Zoology, 2013, 48(2): 205-211
Elzaki M A, Zhang W, Han Z. Cytochrome P450 CYP4DE1 and CYP6CW3v2 contribute to ethiprole resistance in Laodelphax striatellus (Fallén) [J]. Insect Molecular Biology, 2015, 24(3): 368-376
Global Info Research. Global ethiprole market 2022 by manufacturers, regions, type and application, forecast to 2022 [R]. Hongkong: Global Info Research, 2022
Liu X G, Dong F S, Xu J, et al. Dissipation and adsorption behavior of the insecticide ethiprole on various cultivated soils in China [J]. Journal of Integrative Agriculture, 2014, 13(11): 2471-2478
Tanaka T, Suzuki T, Inomata A. Reproductive and neurobehavioral effects of maternal exposure to ethiprole in F1-generation mice [J]. Birth Defects Research, 2018, 110(3): 259-275
Liu Y Y, Wang C, Qi S Z, et al. The sublethal effects of ethiprole on the development, defense mechanisms, and immune pathways of honeybees (Apis mellifera L.) [J]. Environmental Geochemistry and Health, 2021, 43(1): 461-473
牛新月, 齐素贞, 吴黎明, 等. 乙虫腈悬浮剂对新出房意大利蜜蜂的毒性研究[J]. 生态毒理学报, 2019, 14(3): 203-213 Niu X Y, Qi S Z, Wu L M, et al. Toxicity studies of ethiprole suspension concentrate to newly emerged honey bees (Apis mellifera L.) [J]. Asian Journal of Ecotoxicology, 2019, 14(3): 203-213 (in Chinese)
Bohnsack K E, Höbartner C, Bohnsack M T. Eukaryotic 5-methylcytosine (m5C) RNA methyltransferases: Mechanisms, cellular functions, and links to disease [J]. Genes, 2019, 10(2): 102
Bonfils C, Beaulieu N, Chan E, et al. Characterization of the human DNA methyltransferase splice variant Dnmt1b [J]. Journal of Biological Chemistry, 2000, 275(15): 10754-10760
Castillo P, Ibáñez F, Guajardo A, et al. Impact of cadmium exposure during pregnancy on hepatic glucocorticoid receptor methylation and expression in rat fetus [J]. PLoS One, 2012, 7(9): e44139
Ashapkin V V, Kutueva L I, Vanyushin B F. Dnmt2 is the most evolutionary conserved and enigmatic cytosine DNA methyltransferase in eukaryotes [J]. Russian Journal of Genetics, 2016, 52(3): 237-248
Chen Z Y, Zhang Y. Role of mammalian DNA methyltransferases in development [J]. Annual Review of Biochemistry, 2020, 89: 135-158
Cardoso-Júnior Jr, Guidugli-Lazzarini K R, Hartfelder K. DNA methylation affects the lifespan of honey bee (Apis mellifera L.) workers—Evidence for a regulatory module that involves vitellogenin expression but is independent of juvenile hormone function [J]. Insect Biochemistry and Molecular Biology, 2018, 92: 21-29
Wang Y, Jorda M, Jones P L, et al. Functional CpG methylation system in a social insect [J]. Science, 2006, 314(5799): 645-647
Zhang G Q, Huang H, Liu D, et al. N6-methyladenine DNA modification in Drosophila [J]. Cell, 2015, 161(4): 893-906
Nachtergaele S, He C. The emerging biology of RNA post-transcriptional modifications [J]. RNA Biology, 2017, 14(2): 156-163
Motorin Y, Helm M. RNA nucleotide methylation [J]. Wiley Interdisciplinary Reviews RNA, 2011, 2(5): 611-631
Meyer K D, Jaffrey S R. Rethinking m6A readers, writers, and erasers [J]. Annual Review of Cell and Developmental Biology, 2017, 33: 319-342
Yang Y, Hsu P J, Chen Y S, et al. Dynamic transcriptomic m6A decoration: Writers, erasers, readers and functions in RNA metabolism [J]. Cell Research, 2018, 28(6): 616-624
Shi H L, Wei J B, He C. Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and erasers [J]. Molecular Cell, 2019, 74(4): 640-650
Mauer J, Luo X B, Blanjoie A, et al. Reversible methylation of m6Am in the 5’ cap controls mRNA stability [J]. Nature, 2017, 541(7637): 371-375
Delatte B, Wang F, Ngoc L V, et al. RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine [J]. Science, 2016, 351(6270): 282-285
Li S B, Zhou H L, Liao S H, et al. Structural basis for METTL6-mediated m3C RNA methylation [J]. Biochemical and Biophysical Research Communications, 2022, 589: 159-164
Wang Y M, Li D Q, Gao J B, et al. The 2’-O-methyladenosine nucleoside modification gene OsTRM13 positively regulates salt stress tolerance in rice [J]. Journal of Experimental Botany, 2017, 68(7): 1479-1491
Cui W, Pizzollo J, Han Z B, et al. Nop2 is required for mammalian preimplantation development [J]. Molecular Reproduction and Development, 2016, 83(2): 124-131
Bataglia L, Simões Z P, Nunes F F. Active genic machinery for epigenetic RNA modifications in bees [J]. Insect Molecular Biology, 2021, 30(6): 566-579
Yang X, Wei X G, Yang J, et al. Epitranscriptomic regulation of insecticide resistance [J]. Science Advances, 2021, 7(19): eabe5903
苍涛, 章虎, 王新全, 等. 手性乙虫腈对3种非靶标生物的急性毒性及初步风险评价[J]. 农药学学报, 2016, 18(1): 65-70 Cang T, Zhang H, Wang X Q, et al. Acute toxicities and preliminary risk evaluation of chiral ethiprole to three non-target organisms [J]. Chinese Journal of Pesticide Science, 2016, 18(1): 65-70 (in Chinese)
Organization for Economic Co-operation and Development (OECD). No. 237, OECD guidelines for the testing of chemicals: Honey bee (Apis mellifera) larval toxicity test, single exposure [S]. Paris: OECD, 2013
Wang M, Xiao Y, Li Y, et al. RNA m6A modification functions in larval development and caste differentiation in honeybee (Apis mellifera) [J]. Cell Reports, 2021, 34(1): 108580
Zhu W Y, Schmehl D R, Mullin C A, et al. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae [J]. PLoS One, 2014, 9(1): e77547
Tavares D A, Roat T C, Silva-Zacarin E C M, et al. Exposure to thiamethoxam during the larval phase affects synapsin levels in the brain of the honey bee [J]. Ecotoxicology and Environmental Safety, 2019, 169: 523-528
李佳欢, 齐素贞, 吴黎明, 等. 氟虫腈对意大利蜜蜂工蜂幼虫及幼龄工蜂的亚致死效应[J]. 生态毒理学报, 2021, 16(5): 314-325 Li J H, Qi S Z, Wu L M, et al. Sublethal effects of fipronil on larvae and young worker honey bees (Apis mellifera ligustica) [J]. Asian Journal of Ecotoxicology, 2021, 16(5): 314-325 (in Chinese)
Peters A, Nawrot T S, Baccarelli A A. Hallmarks of environmental insults [J]. Cell, 2021, 184(6): 1455-1468
Xiang Y, Laurent B, Hsu C H, et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response [J]. Nature, 2017, 543(7646): 573-576
Heng J H, Tian M, Zhang W F, et al. Maternal heat stress regulates the early fat deposition partly through modification of m6A RNA methylation in neonatal piglets [J]. Cell Stress & Chaperones, 2019, 24(3): 635-645
Wakisaka K T, Muraoka Y, Shimizu J, et al. Drosophila alpha-ketoglutarate-dependent dioxygenase AlkB is involved in repair from neuronal disorders induced by ultraviolet damage [J]. Neuroreport, 2019, 30(15): 1039-1047