乙虫腈对意大利蜜蜂工蜂幼虫核酸甲基化的影响
Effects of Ethiprole on Nuclear Acid Methylation of Apis mellifera ligustica Worker Larvae
-
摘要: 蜜蜂是重要的环境污染指示生物。作为氟虫腈的替代药剂,乙虫腈对蜜蜂仍有高风险。本文首次基于DNA和RNA甲基化角度评估了亚致死剂量(10-5、10-4、10-3和10-2 mg·L-1)乙虫腈重复暴露对意大利蜜蜂工蜂幼虫生长发育的影响。结果显示,乙虫腈持续暴露引起了DNA 5mC甲基化水平显著下降和DNA甲基化酶基因Dnmt3显著下调;与DNA相比,RNA(总RNA和mRNA)甲基化所受影响更为显著,各暴露浓度下,总RNA m5C、m3C甲基化和mRNA m6A、m3C甲基化水平均显著提高,RNA m6A去甲基化酶基因ALKBH1均显著下调(P<0.01),m5C甲基化酶基因NSUN4的表达均显著上调(P<0.01)。综上,甲基化酶基因Dnmt3、ALKBH1和NSUN4可作为乙虫腈暴露风险评估的潜在标志物。本研究为杀虫剂的风险预警及评估提供了新的科学视角和技术手段。Abstract: Honeybee is an important bioindicator for environmental pollutants. As a substitute for fipronil, ethiprole is still a high risk to honeybee. Herein, we evaluated the effects of ethiprole at sublethal concentrations (10-5, 10-4, 10-3, and 10-2 mg·L-1) on the DNA and RNA methylation by continuous exposure of Apis mellifera ligustica worker larvae to it. The results showed significant hypomethylation of DNA 5mC and downregulation of Dnmt3 expression level under all test concentrations. Compared to DNA, RNA methylation, including total RNA and mRNA, was more marked. In all of the treatments, the total RNA methylation in m5C and m3C, and mRNA m6A and m3C methylation were significantly upregulated; the expression of ALKBH1 that encoding RNA m6A demethylase was significantly downregulated (P<0.01); while the NSUN4 encoding RNA m5C methyltransferase was significantly upregulated (P<0.01). In conclusion, Dnmt3, ALKBH1 and NSUN4 are sensitive enough to sublethal doses of ethiprole, suggesting its potential as risk evaluators for ethiprole. This study provides a new perspective and technic for the assessment of pesticide risk.
-
Key words:
- ethiprole /
- Apis mellifera ligustica /
- larvae /
- sublethal toxicity /
- nuclear acid methylation
-
-
Potts S G, Imperatriz-Fonseca V, Ngo H T, et al. Safeguarding pollinators and their values to human well-being [J]. Nature, 2016, 540(7632): 220-229 Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? [J]. Oikos, 2011, 120(3): 321-326 Potts S G, Biesmeijer J C, Kremen C, et al. Global pollinator declines: Trends, impacts and drivers [J]. Trends in Ecology & Evolution, 2010, 25(6): 345-353 李定银, 郅军锐, 张涛, 等. 乙基多杀菌素和乙虫腈对西花蓟马解毒酶和乙酰胆碱酯酶活性的影响[J]. 应用昆虫学报, 2020, 57(6): 1385-1393 Li D Y, Zhi J R, Zhang T, et al. Effects of spinetoram and ethiprole on detoxification enzyme and acetylcholin esterase activity in Frankliniella occidentalis (Pergande) [J]. Chinese Journal of Applied Entomology, 2020, 57(6): 1385-1393 (in Chinese)
Punyawattoe P, Han Z J, Sriratanasak W, et al. Ethiprole resistance in Nilaparvata lugens (Hemiptera: Delphacidae): Possible mechanisms and cross-resistance [J]. Applied Entomology and Zoology, 2013, 48(2): 205-211 Elzaki M A, Zhang W, Han Z. Cytochrome P450 CYP4DE1 and CYP6CW3v2 contribute to ethiprole resistance in Laodelphax striatellus (Fallén) [J]. Insect Molecular Biology, 2015, 24(3): 368-376 Global Info Research. Global ethiprole market 2022 by manufacturers, regions, type and application, forecast to 2022 [R]. Hongkong: Global Info Research, 2022 Liu X G, Dong F S, Xu J, et al. Dissipation and adsorption behavior of the insecticide ethiprole on various cultivated soils in China [J]. Journal of Integrative Agriculture, 2014, 13(11): 2471-2478 Tanaka T, Suzuki T, Inomata A. Reproductive and neurobehavioral effects of maternal exposure to ethiprole in F1-generation mice [J]. Birth Defects Research, 2018, 110(3): 259-275 Liu Y Y, Wang C, Qi S Z, et al. The sublethal effects of ethiprole on the development, defense mechanisms, and immune pathways of honeybees (Apis mellifera L.) [J]. Environmental Geochemistry and Health, 2021, 43(1): 461-473 牛新月, 齐素贞, 吴黎明, 等. 乙虫腈悬浮剂对新出房意大利蜜蜂的毒性研究[J]. 生态毒理学报, 2019, 14(3): 203-213 Niu X Y, Qi S Z, Wu L M, et al. Toxicity studies of ethiprole suspension concentrate to newly emerged honey bees (Apis mellifera L.) [J]. Asian Journal of Ecotoxicology, 2019, 14(3): 203-213 (in Chinese)
Bohnsack K E, Höbartner C, Bohnsack M T. Eukaryotic 5-methylcytosine (m5C) RNA methyltransferases: Mechanisms, cellular functions, and links to disease [J]. Genes, 2019, 10(2): 102 Bonfils C, Beaulieu N, Chan E, et al. Characterization of the human DNA methyltransferase splice variant Dnmt1b [J]. Journal of Biological Chemistry, 2000, 275(15): 10754-10760 Castillo P, Ibáñez F, Guajardo A, et al. Impact of cadmium exposure during pregnancy on hepatic glucocorticoid receptor methylation and expression in rat fetus [J]. PLoS One, 2012, 7(9): e44139 Ashapkin V V, Kutueva L I, Vanyushin B F. Dnmt2 is the most evolutionary conserved and enigmatic cytosine DNA methyltransferase in eukaryotes [J]. Russian Journal of Genetics, 2016, 52(3): 237-248 Chen Z Y, Zhang Y. Role of mammalian DNA methyltransferases in development [J]. Annual Review of Biochemistry, 2020, 89: 135-158 Cardoso-Júnior Jr, Guidugli-Lazzarini K R, Hartfelder K. DNA methylation affects the lifespan of honey bee (Apis mellifera L.) workers—Evidence for a regulatory module that involves vitellogenin expression but is independent of juvenile hormone function [J]. Insect Biochemistry and Molecular Biology, 2018, 92: 21-29 Wang Y, Jorda M, Jones P L, et al. Functional CpG methylation system in a social insect [J]. Science, 2006, 314(5799): 645-647 Zhang G Q, Huang H, Liu D, et al. N6-methyladenine DNA modification in Drosophila [J]. Cell, 2015, 161(4): 893-906 Nachtergaele S, He C. The emerging biology of RNA post-transcriptional modifications [J]. RNA Biology, 2017, 14(2): 156-163 Motorin Y, Helm M. RNA nucleotide methylation [J]. Wiley Interdisciplinary Reviews RNA, 2011, 2(5): 611-631 Meyer K D, Jaffrey S R. Rethinking m6A readers, writers, and erasers [J]. Annual Review of Cell and Developmental Biology, 2017, 33: 319-342 Yang Y, Hsu P J, Chen Y S, et al. Dynamic transcriptomic m6A decoration: Writers, erasers, readers and functions in RNA metabolism [J]. Cell Research, 2018, 28(6): 616-624 Shi H L, Wei J B, He C. Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and erasers [J]. Molecular Cell, 2019, 74(4): 640-650 Mauer J, Luo X B, Blanjoie A, et al. Reversible methylation of m6Am in the 5’ cap controls mRNA stability [J]. Nature, 2017, 541(7637): 371-375 Delatte B, Wang F, Ngoc L V, et al. RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine [J]. Science, 2016, 351(6270): 282-285 Li S B, Zhou H L, Liao S H, et al. Structural basis for METTL6-mediated m3C RNA methylation [J]. Biochemical and Biophysical Research Communications, 2022, 589: 159-164 Wang Y M, Li D Q, Gao J B, et al. The 2’-O-methyladenosine nucleoside modification gene OsTRM13 positively regulates salt stress tolerance in rice [J]. Journal of Experimental Botany, 2017, 68(7): 1479-1491 Cui W, Pizzollo J, Han Z B, et al. Nop2 is required for mammalian preimplantation development [J]. Molecular Reproduction and Development, 2016, 83(2): 124-131 Bataglia L, Simões Z P, Nunes F F. Active genic machinery for epigenetic RNA modifications in bees [J]. Insect Molecular Biology, 2021, 30(6): 566-579 Yang X, Wei X G, Yang J, et al. Epitranscriptomic regulation of insecticide resistance [J]. Science Advances, 2021, 7(19): eabe5903 苍涛, 章虎, 王新全, 等. 手性乙虫腈对3种非靶标生物的急性毒性及初步风险评价[J]. 农药学学报, 2016, 18(1): 65-70 Cang T, Zhang H, Wang X Q, et al. Acute toxicities and preliminary risk evaluation of chiral ethiprole to three non-target organisms [J]. Chinese Journal of Pesticide Science, 2016, 18(1): 65-70 (in Chinese)
Organization for Economic Co-operation and Development (OECD). No. 237, OECD guidelines for the testing of chemicals: Honey bee (Apis mellifera) larval toxicity test, single exposure [S]. Paris: OECD, 2013 Wang M, Xiao Y, Li Y, et al. RNA m6A modification functions in larval development and caste differentiation in honeybee (Apis mellifera) [J]. Cell Reports, 2021, 34(1): 108580 Zhu W Y, Schmehl D R, Mullin C A, et al. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae [J]. PLoS One, 2014, 9(1): e77547 Tavares D A, Roat T C, Silva-Zacarin E C M, et al. Exposure to thiamethoxam during the larval phase affects synapsin levels in the brain of the honey bee [J]. Ecotoxicology and Environmental Safety, 2019, 169: 523-528 李佳欢, 齐素贞, 吴黎明, 等. 氟虫腈对意大利蜜蜂工蜂幼虫及幼龄工蜂的亚致死效应[J]. 生态毒理学报, 2021, 16(5): 314-325 Li J H, Qi S Z, Wu L M, et al. Sublethal effects of fipronil on larvae and young worker honey bees (Apis mellifera ligustica) [J]. Asian Journal of Ecotoxicology, 2021, 16(5): 314-325 (in Chinese)
Peters A, Nawrot T S, Baccarelli A A. Hallmarks of environmental insults [J]. Cell, 2021, 184(6): 1455-1468 Xiang Y, Laurent B, Hsu C H, et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response [J]. Nature, 2017, 543(7646): 573-576 Heng J H, Tian M, Zhang W F, et al. Maternal heat stress regulates the early fat deposition partly through modification of m6A RNA methylation in neonatal piglets [J]. Cell Stress & Chaperones, 2019, 24(3): 635-645 Wakisaka K T, Muraoka Y, Shimizu J, et al. Drosophila alpha-ketoglutarate-dependent dioxygenase AlkB is involved in repair from neuronal disorders induced by ultraviolet damage [J]. Neuroreport, 2019, 30(15): 1039-1047 -
![WeChat](http://eekw.rcees.ac.cn//eekw-data/stdlxb/2023/1/PIC/wechat_cn1055fd26-9e85-4338-8047-0cdbd4e6d17a.jpg)
计量
- 文章访问数: 1913
- HTML全文浏览数: 1913
- PDF下载数: 106
- 施引文献: 0