Rillig M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12):6453-6454
|
张晓菲, 汪磊. 环境中纳米塑料的分离与检测[J]. 环境化学, 2020, 39(1):8-11
Zhang X F, Wang L. The separation and detection methods of nanoplastics in the environment[J]. Environmental Chemistry, 2020, 39(1):8-11(in Chinese)
|
Gangadoo S, Owen S, Rajapaksha P, et al. Nano-plastics and their analytical characterisation and fate in the marine environment:From source to sea[J]. The Science of the Total Environment, 2020, 732:138792
|
Awet T T, Kohl Y, Meier F, et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil[J]. Environmental Sciences Europe, 2018, 30(1):11
|
Lin W, Jiang R F, Hu S Z, et al. Investigating the toxicities of different functionalized polystyrene nanoplastics on Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2019, 180:509-516
|
Zhang Q, Qu Q, Lu T, et al. The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth[J]. Environmental Pollution, 2018, 243(Pt B):1106-1112
|
陈璇, 章家恩, 危晖. 环境微塑料的迁移转化及生态毒理学研究进展[J]. 生态毒理学报, 2021, 16(6):70-86
Chen X, Zhang J E, Wei H. Research progress and prospect on transportation, transformation and ecotoxicology of microplastics in environment[J]. Asian Journal of Ecotoxicology, 2021, 16(6):70-86(in Chinese)
|
Peng L C, Fu D D, Qi H Y, et al. Micro- and nano-plastics in marine environment:Source, distribution and threats:A review[J]. Science of the Total Environment, 2020, 698:134254
|
Jeong C B, Kang H M, Lee M C, et al. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana[J]. Scientific Reports, 2017, 7:41323
|
Lee W S, Cho H J, Kim E, et al. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos[J]. Nanoscale, 2019, 11(7):3173-3185
|
Jiang X F, Chen H, Liao Y C, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 2019, 250:831-838
|
Li Z X, Li Q F, Li R J, et al. The distribution and impact of polystyrene nanoplastics on cucumber plants[J]. Environmental Science and Pollution Research International, 2021, 28(13):16042-16053
|
苑文珂. 聚苯乙烯微/纳米塑料对重金属的吸附行为及其对两种典型水生生物的生态毒性研究[D]. 北京:中国科学院大学, 2020:37-48 Yuan W K. A study on the adsorption behaviors of micro/nano-plastics for heavy metals and their ecotoxicity toward two typical aquatic organisms[D]. Beijing:University of Chinese Academy of Sciences, 2020:37
-48(in Chinese)
|
Li L, Luo Y, Li R, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3:929-937
|
Giorgetti L, Spanò C, Muccifora S, et al. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination:Internalization in root cells, induction of toxicity and oxidative stress[J]. Plant Physiology and Biochemistry, 2020, 149:170-177
|
Skjolding L M, Ašmonaitė G, Jølck R I, et al. An assessment of the importance of exposure routes to the uptake and internal localisation of fluorescent nanoparticles in zebrafish (Danio rerio), using light sheet microscopy[J]. Nanotoxicology, 2017, 11(3):351-359
|
Chae Y, Kim D, Kim S W, et al. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain[J]. Scientific Reports, 2018, 8(1):284
|
Heddagaard F E, Møller P. Hazard assessment of small-size plastic particles:Is the conceptual framework of particle toxicology useful?[J]. Food and Chemical Toxicology, 2020, 136:111106
|
Besseling E, Wang B, Lürling M, et al. Nanoplastic affects growth of S. obliquus and reproduction of D. magna[J]. Environmental Science & Technology, 2014, 48(20):12336-12343
|
Ribeiro F, O'Brien J W, Galloway T, et al. Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms[J]. Trends in Analytical Chemistry, 2019, 111:139-147
|
Greven A C, Merk T, Karagöz F, et al. Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas)[J]. Environmental Toxicology and Chemistry, 2016, 35(12):3093-3100
|
Ruiz-Palacios M, Almeida M, Martins M A, et al. Establishment of a brain cell line (FuB-1) from mummichog (Fundulus heteroclitus) and its application to fish virology, immunity and nanoplastics toxicology[J]. The Science of the Total Environment, 2020, 708:134821
|
Li Z L, Feng C H, Wu Y H, et al. Impacts of nanoplastics on bivalve:Fluorescence tracing of organ accumulation, oxidative stress and damage[J]. Journal of Hazardous Materials, 2020, 392:122418
|
Liu Z Q, Li Y M, Sepúlveda M S, et al. Development of an adverse outcome pathway for nanoplastic toxicity in Daphnia pulex using proteomics[J]. The Science of the Total Environment, 2021, 766:144249
|
Sendra M, Staffieri E, Yeste M P, et al. Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum?[J]. Environmental Pollution, 2019, 249:610-619
|
Bergami E, Pugnalini S, Vannuccini M L, et al. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana[J]. Aquatic Toxicology, 2017, 189:159-169
|
Li Y M, Liu Z Q, Li M F, et al. Effects of nanoplastics on antioxidant and immune enzyme activities and related gene expression in juvenile Macrobrachium nipponense[J]. Journal of Hazardous Materials, 2020, 398:122990
|
Li Y M, Liu Z Q, Yang Y, et al. Effects of nanoplastics on energy metabolism in the oriental river prawn (Macrobrachium nipponense)[J]. Environmental Pollution, 2021, 268(Pt A):115890
|
Pinsino A, Bergami E, Della Torre C, et al. Amino-modified polystyrene nanoparticles affect signalling pathways of the sea urchin (Paracentrotus lividus) embryos[J]. Nanotoxicology, 2017, 11(2):201-209
|
Trevisan R, Voy C, Chen S X, et al. Nanoplastics decrease the toxicity of a complex PAH mixture but impair mitochondrial energy production in developing zebrafish[J]. Environmental Science & Technology, 2019, 53(14):8405-8415
|
Brandts I, Teles M, Gonçalves A P, et al. Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine[J]. The Science of the Total Environment, 2018, 643:775-784
|
Jeong C B, Kang H M, Lee Y H, et al. Nanoplastic ingestion enhances toxicity of persistent organic pollutants (POPs) in the monogonont rotifer Brachionus koreanus via multixenobiotic resistance (MXR) disruption[J]. Environmental Science & Technology, 2018, 52(19):11411-11418
|
Peiponen K E, Räty J, Ishaq U, et al. Outlook on optical identification of micro- and nanoplastics in aquatic environments[J]. Chemosphere, 2019, 214:424-429
|
Tallec K, Huvet A, di Poi C, et al. Nanoplastics impaired oyster free living stages, gametes and embryos[J]. Environmental Pollution, 2018, 242(Pt B):1226-1235
|
S ökmen T Ö, Sulukan E, Türko g[DD(-2.4mm] [HT6] ˇ[HT5"] [] lu M, et al. Polystyrene nanoplastics (20 nm) are able to bioaccumulate and cause oxidative DNA damages in the brain tissue of zebrafish embryo (Danio rerio)[J]. Neurotoxicology, 2020, 77:51-59
|
Kelpsiene E, Torstensson O, Ekvall M T, et al. Long-term exposure to nanoplastics reduces life-time in Daphnia magna[J]. Scientific Reports, 2020, 10(1):5979
|
Liu Z Q, Li Y M, Pérez E, et al. Polystyrene nanoplastic induces oxidative stress, immune defense, and glycometabolism change in Daphnia pulex:Application of transcriptome profiling in risk assessment of nanoplastics[J]. Journal of Hazardous Materials, 2021, 402:123778
|
Feng L J, Sun X D, Zhu F P, et al. Nanoplastics promote microcystin synthesis and release from cyanobacterial Microcystis aeruginosa[J]. Environmental Science & Technology, 2020, 54(6):3386-3394
|
Zhao T, Tan L J, Huang W Q, et al. The interactions between micro polyvinyl chloride (mPVC) and marine dinoflagellate Karenia mikimotoi:The inhibition of growth, chlorophyll and photosynthetic efficiency[J]. Environmental Pollution, 2019, 247:883-889
|
Singh N, Bhagat J, Tiwari E, et al. Metal oxide nanoparticles and polycyclic aromatic hydrocarbons alter nanoplastic's stability and toxicity to zebrafish[J]. Journal of Hazardous Materials, 2021, 407:124382
|
Jeong C B, Won E J, Kang H M, et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus)[J]. Environmental Science & Technology, 2016, 50(16):8849-8857
|
Canesi L, Ciacci C, Fabbri R, et al. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment:Role of soluble hemolymph proteins[J]. Environmental Research, 2016, 150:73-81
|
Nasser F, Lynch I. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna[J]. Journal of Proteomics, 2016, 137:45-51
|
冯立娟. 纳米塑料对典型水生微生物的生物效应与作用机制[D]. 济南:山东大学, 2020:42-60 Feng L J. Biological effects and mechanisms of nanoplastics on typical aquatic microorganisms[D]. Jinan:Shandong University, 2020:42
-60(in Chinese)
|
He J Y, Yang X H, Liu H H. Enhanced toxicity of triphenyl phosphate to zebrafish in the presence of micro- and nano-plastics[J]. Science of the Total Environment, 2021, 756:143986
|
Mateos-Cárdenas A, van Pelt F N A M, O'Halloran J, et al. Adsorption, uptake and toxicity of micro- and nanoplastics:Effects on terrestrial plants and aquatic macrophytes[J]. Environmental Pollution, 2021, 284:117183
|
吴佳妮, 杨天志, 连加攀, 等. 聚苯乙烯纳米塑料(PSNPs)对大豆(Glycine max)种子发芽和幼苗生长的影响[J]. 环境科学学报, 2020, 40(12):4581-4589
Wu J N, Yang T Z, Lian J P, et al. Effects of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of soybean (Glycine max)[J]. Acta Scientiae Circumstantiae, 2020, 40(12):4581-4589(in Chinese)
|
Zhou C Q, Lu C H, Mai L, et al. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage[J]. Journal of Hazardous Materials, 2021, 401:123412
|
连加攀. 聚苯乙烯纳米塑料(PSNPs)对小麦单一及镉联合毒性研究[D]. 天津:南开大学, 2020:25-43 Lian J P. Single and combined toxicity of polystyrene nanoplastics (PSNPs) and cadmium to wheat (Triticum aestivum L.)[D]. Tianjin:Nankai University, 2020:25
-43(in Chinese)
|
黄献培, 向垒, 郭静婕, 等. 聚苯乙烯微球对菜心种子及幼苗的毒性效应[J]. 农业环境科学学报, 2021, 40(5):926-933
Huang X P, Xiang L, Guo J J, et al. Toxicity of polystyrene microplastics on seeds and seedlings of Brassica campestris L.[J]. Journal of Agro-Environment Science, 2021, 40(5):926-933(in Chinese)
|
薛颖昊, 黄宏坤, 靳拓, 等. 土壤微塑料和农药污染及其对土壤动物毒性效应的研究进展[J]. 农业环境科学学报, 2021, 40(2):242-251
Xue Y H, Huang H K, Jin T, et al. Research progress on microplastic and pesticide pollutions and their toxic effects on soil organisms[J]. Journal of Agro-Environment Science, 2021, 40(2):242-251(in Chinese)
|
Zhu B K, Fang Y M, Zhu D, et al. Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus[J]. Environmental Pollution, 2018, 239:408-415
|
Ma J, Sheng G D, Chen Q L, et al. Do combined nanoscale polystyrene and tetracycline impact on the incidence of resistance genes and microbial community disturbance in Enchytraeus crypticus?[J]. Journal of Hazardous Materials, 2020, 387:122012
|
Lei L L, Liu M T, Song Y, et al. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans[J]. Environmental Science:Nano, 2018, 5(8):2009-2020
|
Liu Q Y, Chen C X, Li M T, et al. Neurodevelopmental toxicity of polystyrene nanoplastics in Caenorhabditis elegans and the regulating effect of presenilin[J]. ACS Omega, 2020, 5(51):33170-33177
|
Qiu Y X, Luo L B, Yang Y H, et al. Potential toxicity of nanopolystyrene on lifespan and aging process of nematode Caenorhabditis elegans[J]. The Science of the Total Environment, 2020, 705:135918
|
Wang S T, Liu H L, Qu M, et al. Response of tyramine and glutamate related signals to nanoplastic exposure in Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2021, 217:112239
|
Kim S W, An Y J. Soil microplastics inhibit the movement of springtail species[J]. Environment International, 2019, 126:699-706
|
Guimarães A T B, de Lima Rodrigues A S, Pereira P S, et al. Toxicity of polystyrene nanoplastics in dragonfly larvae:An insight on how these pollutants can affect bentonic macroinvertebrates[J]. The Science of the Total Environment, 2021, 752:141936
|
Matthews S, Mai L, Jeong C B, et al. Key mechanisms of micro- and nanoplastic (MNP) toxicity across taxonomic groups[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2021, 247:109056
|
Sun X M, Chen B J, Li Q F, et al. Toxicities of polystyrene nano- and microplastics toward marine bacterium Halomonas alkaliphila[J]. The Science of the Total Environment, 2018, 642:1378-1385
|
Rossi G, Barnoud J, Monticelli L. Polystyrene nanoparticles perturb lipid membranes[J]. The Journal of Physical Chemistry Letters, 2014, 5(1):241-246
|
Fringer V S, Fawcett L P, Mitrano D M, et al. Impacts of nanoplastics on the viability and riboflavin secretion in the model bacteria Shewanella oneidensis[J]. Frontiers in Environmental Science, 2020, 8:97
|
Saygin H, Baysal A. Similarities and discrepancies between bio-based and conventional submicron-sized plastics:In relation to clinically important bacteria[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 105(1):26-35
|
Ustabasi G S, Baysal A. Bacterial interactions of microplastics extracted from toothpaste under controlled conditions and the influence of seawater[J]. Science of the Total Environment, 2020, 703:135024
|
Chen W Y, Yuan D, Shan M, et al. Single and combined effects of amino polystyrene and perfluorooctane sulfonate on hydrogen-producing thermophilic bacteria and the interaction mechanisms[J]. The Science of the Total Environment, 2020, 703:135015
|
Kumar M, Chen H Y, Sarsaiya S, et al. Current research trends on micro- and nano-plastics as an emerging threat to global environment:A review[J]. Journal of Hazardous Materials, 2021, 409:124967
|
Lehner R, Weder C, Petri-Fink A, et al. Emergence of nanoplastic in the environment and possible impact on human health[J]. Environmental Science & Technology, 2019, 53(4):1748-1765
|
Teles M, Balasch J C, Oliveira M, et al. Insights into nanoplastics effects on human health[J]. Science Bulletin, 2020, 65(23):1966-1969
|
Daroowalla F, Wang M L, Piacitelli C, et al. Flock workers' exposures and respiratory symptoms in five plants[J]. American Journal of Industrial Medicine, 2005, 47(2):144-152
|
Hoffman B U, Lumpkin E A. A gut feeling[J]. Science, 2018, 361(6408):1203-1204
|
Gopinath P M, Saranya V, Vijayakumar S, et al. Assessment on interactive prospectives of nanoplastics with plasma proteins and the toxicological impacts of virgin, coronated and environmentally released-nanoplastics[J]. Scientific Reports, 2019, 9(1):8860
|
Domenech J, Hernández A, Rubio L, et al. Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier[J]. Archives of Toxicology, 2020, 94(9):2997-3012
|
闫协民. 聚苯乙烯微塑料/四环素复合污染物对AGS细胞损伤机理研究[D]. 湛江:广东海洋大学, 2020:16-31 Yan X M. A study on the damage mechanism of polystyrene microplastic/tetracycline complex on AGS cells[D]. Zhanjiang:Guangdong Ocean University, 2020:16
-31(in Chinese)
|
Li Y L, Hu Q, Miao G H, et al. Size-dependent mechanism of intracellular localization and cytotoxicity of mono-disperse spherical mesoporous nano- and micron-bioactive glass particles[J]. Journal of Biomedical Nanotechnology, 2016, 12(5):863-877
|
Wang Q Q, Bai J L, Ning B A, et al. Effects of bisphenol A and nanoscale and microscale polystyrene plastic exposure on particle uptake and toxicity in human Caco-2 cells[J]. Chemosphere, 2020, 254:126788
|
Xu M K, Halimu G, Zhang Q R, et al. Internalization and toxicity:A preliminary study of effects of nanoplastic particles on human lung epithelial cell[J]. The Science of the Total Environment, 2019, 694:133794
|
Lim S L, Ng C T, Zou L, et al. Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells[J]. Nanotoxicology, 2019, 13(8):1117-1132
|
Hesler M, Aengenheister L, Ellinger B, et al. Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro[J]. Toxicology in Vitro:An International Journal Published in Association with BIBRA, 2019, 61:104610
|