Rillig M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12):6453-6454
张晓菲, 汪磊. 环境中纳米塑料的分离与检测[J]. 环境化学, 2020, 39(1):8-11 Zhang X F, Wang L. The separation and detection methods of nanoplastics in the environment[J]. Environmental Chemistry, 2020, 39(1):8-11(in Chinese)
Gangadoo S, Owen S, Rajapaksha P, et al. Nano-plastics and their analytical characterisation and fate in the marine environment:From source to sea[J]. The Science of the Total Environment, 2020, 732:138792
Awet T T, Kohl Y, Meier F, et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil[J]. Environmental Sciences Europe, 2018, 30(1):11
Lin W, Jiang R F, Hu S Z, et al. Investigating the toxicities of different functionalized polystyrene nanoplastics on Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2019, 180:509-516
Zhang Q, Qu Q, Lu T, et al. The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth[J]. Environmental Pollution, 2018, 243(Pt B):1106-1112
陈璇, 章家恩, 危晖. 环境微塑料的迁移转化及生态毒理学研究进展[J]. 生态毒理学报, 2021, 16(6):70-86 Chen X, Zhang J E, Wei H. Research progress and prospect on transportation, transformation and ecotoxicology of microplastics in environment[J]. Asian Journal of Ecotoxicology, 2021, 16(6):70-86(in Chinese)
Peng L C, Fu D D, Qi H Y, et al. Micro- and nano-plastics in marine environment:Source, distribution and threats:A review[J]. Science of the Total Environment, 2020, 698:134254
Jeong C B, Kang H M, Lee M C, et al. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana[J]. Scientific Reports, 2017, 7:41323
Lee W S, Cho H J, Kim E, et al. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos[J]. Nanoscale, 2019, 11(7):3173-3185
Jiang X F, Chen H, Liao Y C, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 2019, 250:831-838
Li Z X, Li Q F, Li R J, et al. The distribution and impact of polystyrene nanoplastics on cucumber plants[J]. Environmental Science and Pollution Research International, 2021, 28(13):16042-16053
苑文珂. 聚苯乙烯微/纳米塑料对重金属的吸附行为及其对两种典型水生生物的生态毒性研究[D]. 北京:中国科学院大学, 2020:37-48 Yuan W K. A study on the adsorption behaviors of micro/nano-plastics for heavy metals and their ecotoxicity toward two typical aquatic organisms[D]. Beijing:University of Chinese Academy of Sciences, 2020:37 -48(in Chinese)
Li L, Luo Y, Li R, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3:929-937
Giorgetti L, Spanò C, Muccifora S, et al. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination:Internalization in root cells, induction of toxicity and oxidative stress[J]. Plant Physiology and Biochemistry, 2020, 149:170-177
Skjolding L M, Ašmonaitė G, Jølck R I, et al. An assessment of the importance of exposure routes to the uptake and internal localisation of fluorescent nanoparticles in zebrafish (Danio rerio), using light sheet microscopy[J]. Nanotoxicology, 2017, 11(3):351-359
Chae Y, Kim D, Kim S W, et al. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain[J]. Scientific Reports, 2018, 8(1):284
Heddagaard F E, Møller P. Hazard assessment of small-size plastic particles:Is the conceptual framework of particle toxicology useful?[J]. Food and Chemical Toxicology, 2020, 136:111106
Besseling E, Wang B, Lürling M, et al. Nanoplastic affects growth of S. obliquus and reproduction of D. magna[J]. Environmental Science & Technology, 2014, 48(20):12336-12343
Ribeiro F, O'Brien J W, Galloway T, et al. Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms[J]. Trends in Analytical Chemistry, 2019, 111:139-147
Greven A C, Merk T, Karagöz F, et al. Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas)[J]. Environmental Toxicology and Chemistry, 2016, 35(12):3093-3100
Ruiz-Palacios M, Almeida M, Martins M A, et al. Establishment of a brain cell line (FuB-1) from mummichog (Fundulus heteroclitus) and its application to fish virology, immunity and nanoplastics toxicology[J]. The Science of the Total Environment, 2020, 708:134821
Li Z L, Feng C H, Wu Y H, et al. Impacts of nanoplastics on bivalve:Fluorescence tracing of organ accumulation, oxidative stress and damage[J]. Journal of Hazardous Materials, 2020, 392:122418
Liu Z Q, Li Y M, Sepúlveda M S, et al. Development of an adverse outcome pathway for nanoplastic toxicity in Daphnia pulex using proteomics[J]. The Science of the Total Environment, 2021, 766:144249
Sendra M, Staffieri E, Yeste M P, et al. Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum?[J]. Environmental Pollution, 2019, 249:610-619
Bergami E, Pugnalini S, Vannuccini M L, et al. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana[J]. Aquatic Toxicology, 2017, 189:159-169
Li Y M, Liu Z Q, Li M F, et al. Effects of nanoplastics on antioxidant and immune enzyme activities and related gene expression in juvenile Macrobrachium nipponense[J]. Journal of Hazardous Materials, 2020, 398:122990
Li Y M, Liu Z Q, Yang Y, et al. Effects of nanoplastics on energy metabolism in the oriental river prawn (Macrobrachium nipponense)[J]. Environmental Pollution, 2021, 268(Pt A):115890
Pinsino A, Bergami E, Della Torre C, et al. Amino-modified polystyrene nanoparticles affect signalling pathways of the sea urchin (Paracentrotus lividus) embryos[J]. Nanotoxicology, 2017, 11(2):201-209
Trevisan R, Voy C, Chen S X, et al. Nanoplastics decrease the toxicity of a complex PAH mixture but impair mitochondrial energy production in developing zebrafish[J]. Environmental Science & Technology, 2019, 53(14):8405-8415
Brandts I, Teles M, Gonçalves A P, et al. Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine[J]. The Science of the Total Environment, 2018, 643:775-784
Jeong C B, Kang H M, Lee Y H, et al. Nanoplastic ingestion enhances toxicity of persistent organic pollutants (POPs) in the monogonont rotifer Brachionus koreanus via multixenobiotic resistance (MXR) disruption[J]. Environmental Science & Technology, 2018, 52(19):11411-11418
Peiponen K E, Räty J, Ishaq U, et al. Outlook on optical identification of micro- and nanoplastics in aquatic environments[J]. Chemosphere, 2019, 214:424-429
Tallec K, Huvet A, di Poi C, et al. Nanoplastics impaired oyster free living stages, gametes and embryos[J]. Environmental Pollution, 2018, 242(Pt B):1226-1235
S ökmen T Ö, Sulukan E, Türko g[DD(-2.4mm] [HT6] ˇ[HT5"] [] lu M, et al. Polystyrene nanoplastics (20 nm) are able to bioaccumulate and cause oxidative DNA damages in the brain tissue of zebrafish embryo (Danio rerio)[J]. Neurotoxicology, 2020, 77:51-59
Kelpsiene E, Torstensson O, Ekvall M T, et al. Long-term exposure to nanoplastics reduces life-time in Daphnia magna[J]. Scientific Reports, 2020, 10(1):5979
Liu Z Q, Li Y M, Pérez E, et al. Polystyrene nanoplastic induces oxidative stress, immune defense, and glycometabolism change in Daphnia pulex:Application of transcriptome profiling in risk assessment of nanoplastics[J]. Journal of Hazardous Materials, 2021, 402:123778
Feng L J, Sun X D, Zhu F P, et al. Nanoplastics promote microcystin synthesis and release from cyanobacterial Microcystis aeruginosa[J]. Environmental Science & Technology, 2020, 54(6):3386-3394
Zhao T, Tan L J, Huang W Q, et al. The interactions between micro polyvinyl chloride (mPVC) and marine dinoflagellate Karenia mikimotoi:The inhibition of growth, chlorophyll and photosynthetic efficiency[J]. Environmental Pollution, 2019, 247:883-889
Singh N, Bhagat J, Tiwari E, et al. Metal oxide nanoparticles and polycyclic aromatic hydrocarbons alter nanoplastic's stability and toxicity to zebrafish[J]. Journal of Hazardous Materials, 2021, 407:124382
Jeong C B, Won E J, Kang H M, et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus)[J]. Environmental Science & Technology, 2016, 50(16):8849-8857
Canesi L, Ciacci C, Fabbri R, et al. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment:Role of soluble hemolymph proteins[J]. Environmental Research, 2016, 150:73-81
Nasser F, Lynch I. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna[J]. Journal of Proteomics, 2016, 137:45-51
冯立娟. 纳米塑料对典型水生微生物的生物效应与作用机制[D]. 济南:山东大学, 2020:42-60 Feng L J. Biological effects and mechanisms of nanoplastics on typical aquatic microorganisms[D]. Jinan:Shandong University, 2020:42 -60(in Chinese)
He J Y, Yang X H, Liu H H. Enhanced toxicity of triphenyl phosphate to zebrafish in the presence of micro- and nano-plastics[J]. Science of the Total Environment, 2021, 756:143986
Mateos-Cárdenas A, van Pelt F N A M, O'Halloran J, et al. Adsorption, uptake and toxicity of micro- and nanoplastics:Effects on terrestrial plants and aquatic macrophytes[J]. Environmental Pollution, 2021, 284:117183
吴佳妮, 杨天志, 连加攀, 等. 聚苯乙烯纳米塑料(PSNPs)对大豆(Glycine max)种子发芽和幼苗生长的影响[J]. 环境科学学报, 2020, 40(12):4581-4589 Wu J N, Yang T Z, Lian J P, et al. Effects of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of soybean (Glycine max)[J]. Acta Scientiae Circumstantiae, 2020, 40(12):4581-4589(in Chinese)
Zhou C Q, Lu C H, Mai L, et al. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage[J]. Journal of Hazardous Materials, 2021, 401:123412
连加攀. 聚苯乙烯纳米塑料(PSNPs)对小麦单一及镉联合毒性研究[D]. 天津:南开大学, 2020:25-43 Lian J P. Single and combined toxicity of polystyrene nanoplastics (PSNPs) and cadmium to wheat (Triticum aestivum L.)[D]. Tianjin:Nankai University, 2020:25 -43(in Chinese)
黄献培, 向垒, 郭静婕, 等. 聚苯乙烯微球对菜心种子及幼苗的毒性效应[J]. 农业环境科学学报, 2021, 40(5):926-933 Huang X P, Xiang L, Guo J J, et al. Toxicity of polystyrene microplastics on seeds and seedlings of Brassica campestris L.[J]. Journal of Agro-Environment Science, 2021, 40(5):926-933(in Chinese)
薛颖昊, 黄宏坤, 靳拓, 等. 土壤微塑料和农药污染及其对土壤动物毒性效应的研究进展[J]. 农业环境科学学报, 2021, 40(2):242-251 Xue Y H, Huang H K, Jin T, et al. Research progress on microplastic and pesticide pollutions and their toxic effects on soil organisms[J]. Journal of Agro-Environment Science, 2021, 40(2):242-251(in Chinese)
Zhu B K, Fang Y M, Zhu D, et al. Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus[J]. Environmental Pollution, 2018, 239:408-415
Ma J, Sheng G D, Chen Q L, et al. Do combined nanoscale polystyrene and tetracycline impact on the incidence of resistance genes and microbial community disturbance in Enchytraeus crypticus?[J]. Journal of Hazardous Materials, 2020, 387:122012
Lei L L, Liu M T, Song Y, et al. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans[J]. Environmental Science:Nano, 2018, 5(8):2009-2020
Liu Q Y, Chen C X, Li M T, et al. Neurodevelopmental toxicity of polystyrene nanoplastics in Caenorhabditis elegans and the regulating effect of presenilin[J]. ACS Omega, 2020, 5(51):33170-33177
Qiu Y X, Luo L B, Yang Y H, et al. Potential toxicity of nanopolystyrene on lifespan and aging process of nematode Caenorhabditis elegans[J]. The Science of the Total Environment, 2020, 705:135918
Wang S T, Liu H L, Qu M, et al. Response of tyramine and glutamate related signals to nanoplastic exposure in Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2021, 217:112239
Kim S W, An Y J. Soil microplastics inhibit the movement of springtail species[J]. Environment International, 2019, 126:699-706
Guimarães A T B, de Lima Rodrigues A S, Pereira P S, et al. Toxicity of polystyrene nanoplastics in dragonfly larvae:An insight on how these pollutants can affect bentonic macroinvertebrates[J]. The Science of the Total Environment, 2021, 752:141936
Matthews S, Mai L, Jeong C B, et al. Key mechanisms of micro- and nanoplastic (MNP) toxicity across taxonomic groups[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2021, 247:109056
Sun X M, Chen B J, Li Q F, et al. Toxicities of polystyrene nano- and microplastics toward marine bacterium Halomonas alkaliphila[J]. The Science of the Total Environment, 2018, 642:1378-1385
Rossi G, Barnoud J, Monticelli L. Polystyrene nanoparticles perturb lipid membranes[J]. The Journal of Physical Chemistry Letters, 2014, 5(1):241-246
Fringer V S, Fawcett L P, Mitrano D M, et al. Impacts of nanoplastics on the viability and riboflavin secretion in the model bacteria Shewanella oneidensis[J]. Frontiers in Environmental Science, 2020, 8:97
Saygin H, Baysal A. Similarities and discrepancies between bio-based and conventional submicron-sized plastics:In relation to clinically important bacteria[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 105(1):26-35
Ustabasi G S, Baysal A. Bacterial interactions of microplastics extracted from toothpaste under controlled conditions and the influence of seawater[J]. Science of the Total Environment, 2020, 703:135024
Chen W Y, Yuan D, Shan M, et al. Single and combined effects of amino polystyrene and perfluorooctane sulfonate on hydrogen-producing thermophilic bacteria and the interaction mechanisms[J]. The Science of the Total Environment, 2020, 703:135015
Kumar M, Chen H Y, Sarsaiya S, et al. Current research trends on micro- and nano-plastics as an emerging threat to global environment:A review[J]. Journal of Hazardous Materials, 2021, 409:124967
Lehner R, Weder C, Petri-Fink A, et al. Emergence of nanoplastic in the environment and possible impact on human health[J]. Environmental Science & Technology, 2019, 53(4):1748-1765
Teles M, Balasch J C, Oliveira M, et al. Insights into nanoplastics effects on human health[J]. Science Bulletin, 2020, 65(23):1966-1969
Daroowalla F, Wang M L, Piacitelli C, et al. Flock workers' exposures and respiratory symptoms in five plants[J]. American Journal of Industrial Medicine, 2005, 47(2):144-152
Hoffman B U, Lumpkin E A. A gut feeling[J]. Science, 2018, 361(6408):1203-1204
Gopinath P M, Saranya V, Vijayakumar S, et al. Assessment on interactive prospectives of nanoplastics with plasma proteins and the toxicological impacts of virgin, coronated and environmentally released-nanoplastics[J]. Scientific Reports, 2019, 9(1):8860
Domenech J, Hernández A, Rubio L, et al. Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier[J]. Archives of Toxicology, 2020, 94(9):2997-3012
闫协民. 聚苯乙烯微塑料/四环素复合污染物对AGS细胞损伤机理研究[D]. 湛江:广东海洋大学, 2020:16-31 Yan X M. A study on the damage mechanism of polystyrene microplastic/tetracycline complex on AGS cells[D]. Zhanjiang:Guangdong Ocean University, 2020:16 -31(in Chinese)
Li Y L, Hu Q, Miao G H, et al. Size-dependent mechanism of intracellular localization and cytotoxicity of mono-disperse spherical mesoporous nano- and micron-bioactive glass particles[J]. Journal of Biomedical Nanotechnology, 2016, 12(5):863-877
Wang Q Q, Bai J L, Ning B A, et al. Effects of bisphenol A and nanoscale and microscale polystyrene plastic exposure on particle uptake and toxicity in human Caco-2 cells[J]. Chemosphere, 2020, 254:126788
Xu M K, Halimu G, Zhang Q R, et al. Internalization and toxicity:A preliminary study of effects of nanoplastic particles on human lung epithelial cell[J]. The Science of the Total Environment, 2019, 694:133794
Lim S L, Ng C T, Zou L, et al. Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells[J]. Nanotoxicology, 2019, 13(8):1117-1132
Hesler M, Aengenheister L, Ellinger B, et al. Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro[J]. Toxicology in Vitro:An International Journal Published in Association with BIBRA, 2019, 61:104610