纳米塑料对生物的毒性效应及作用机制研究进展

刘沙沙, 梁绮彤, 陈诺, 杨晓茵. 纳米塑料对生物的毒性效应及作用机制研究进展[J]. 生态毒理学报, 2022, 17(4): 281-290. doi: 10.7524/AJE.1673-5897.20210727001
引用本文: 刘沙沙, 梁绮彤, 陈诺, 杨晓茵. 纳米塑料对生物的毒性效应及作用机制研究进展[J]. 生态毒理学报, 2022, 17(4): 281-290. doi: 10.7524/AJE.1673-5897.20210727001
Liu Shasha, Liang Qitong, Chen Nuo, Yang Xiaoyin. Research Progress on Toxic Effects and Mechanisms of Nanoplastics on Organisms[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 281-290. doi: 10.7524/AJE.1673-5897.20210727001
Citation: Liu Shasha, Liang Qitong, Chen Nuo, Yang Xiaoyin. Research Progress on Toxic Effects and Mechanisms of Nanoplastics on Organisms[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 281-290. doi: 10.7524/AJE.1673-5897.20210727001

纳米塑料对生物的毒性效应及作用机制研究进展

    作者简介: 刘沙沙(1986—),女,博士,研究方向为环境中多环芳烃、微/纳米塑料等污染物的微生物修复及生态毒性效应,E-mail:2657222877@qq.com
    通讯作者: 刘沙沙, E-mail: 2657222877@qq.com
  • 基金项目:

    国家自然科学基金资助项目(42007317);广东省基础与应用基础研究基金项目(2019A1515110272);广东省普通高校青年创新人才项目(2018KQNCX294);肇庆学院优秀青年教师科研能力提升计划资助项目(YQ202105);大学生创新创业训练计划项目(202010580014)

  • 中图分类号: X171.5

Research Progress on Toxic Effects and Mechanisms of Nanoplastics on Organisms

    Corresponding author: Liu Shasha, 2657222877@qq.com
  • Fund Project:
  • 摘要: 环境中的纳米塑料污染已成为全球关注的热点。纳米塑料的粒径极小,容易被鱼类、藻类、贝类、蚤类、甲壳类、棘皮类、环节/节肢动物和农作物等生物摄取并沿食物链进行传递,诱发基因毒性、氧化应激、炎症、代谢紊乱、有丝分裂异常、线粒体损伤和细胞凋亡等,进而影响生物的光合作用效率、生长和繁殖、寿命及存活能力;纳米塑料与细菌接触后会破坏菌体细胞膜的完整性,增加活性氧的产生,抑制酶的活性。由于纳米塑料具有较大的比表面积和强疏水性,易与环境中的其他污染物发生相互作用,将重构污染物的生物有效性,从而改变(增加或削减)其对生物的毒性效应。纳米塑料能够诱发人类源细胞系的氧化应激、炎症、代谢紊乱和细胞毒性等,但目前还未见关于纳米塑料对人体的直接毒性效应的报道。
  • 加载中
  • Rillig M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12):6453-6454
    张晓菲, 汪磊. 环境中纳米塑料的分离与检测[J]. 环境化学, 2020, 39(1):8-11

    Zhang X F, Wang L. The separation and detection methods of nanoplastics in the environment[J]. Environmental Chemistry, 2020, 39(1):8-11(in Chinese)

    Gangadoo S, Owen S, Rajapaksha P, et al. Nano-plastics and their analytical characterisation and fate in the marine environment:From source to sea[J]. The Science of the Total Environment, 2020, 732:138792
    Awet T T, Kohl Y, Meier F, et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil[J]. Environmental Sciences Europe, 2018, 30(1):11
    Lin W, Jiang R F, Hu S Z, et al. Investigating the toxicities of different functionalized polystyrene nanoplastics on Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2019, 180:509-516
    Zhang Q, Qu Q, Lu T, et al. The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth[J]. Environmental Pollution, 2018, 243(Pt B):1106-1112
    陈璇, 章家恩, 危晖. 环境微塑料的迁移转化及生态毒理学研究进展[J]. 生态毒理学报, 2021, 16(6):70-86

    Chen X, Zhang J E, Wei H. Research progress and prospect on transportation, transformation and ecotoxicology of microplastics in environment[J]. Asian Journal of Ecotoxicology, 2021, 16(6):70-86(in Chinese)

    Peng L C, Fu D D, Qi H Y, et al. Micro- and nano-plastics in marine environment:Source, distribution and threats:A review[J]. Science of the Total Environment, 2020, 698:134254
    Jeong C B, Kang H M, Lee M C, et al. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana[J]. Scientific Reports, 2017, 7:41323
    Lee W S, Cho H J, Kim E, et al. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos[J]. Nanoscale, 2019, 11(7):3173-3185
    Jiang X F, Chen H, Liao Y C, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 2019, 250:831-838
    Li Z X, Li Q F, Li R J, et al. The distribution and impact of polystyrene nanoplastics on cucumber plants[J]. Environmental Science and Pollution Research International, 2021, 28(13):16042-16053
    苑文珂. 聚苯乙烯微/纳米塑料对重金属的吸附行为及其对两种典型水生生物的生态毒性研究[D]. 北京:中国科学院大学, 2020:37-48 Yuan W K. A study on the adsorption behaviors of micro/nano-plastics for heavy metals and their ecotoxicity toward two typical aquatic organisms[D]. Beijing:University of Chinese Academy of Sciences, 2020:37

    -48(in Chinese)

    Li L, Luo Y, Li R, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3:929-937
    Giorgetti L, Spanò C, Muccifora S, et al. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination:Internalization in root cells, induction of toxicity and oxidative stress[J]. Plant Physiology and Biochemistry, 2020, 149:170-177
    Skjolding L M, Ašmonaitė G, Jølck R I, et al. An assessment of the importance of exposure routes to the uptake and internal localisation of fluorescent nanoparticles in zebrafish (Danio rerio), using light sheet microscopy[J]. Nanotoxicology, 2017, 11(3):351-359
    Chae Y, Kim D, Kim S W, et al. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain[J]. Scientific Reports, 2018, 8(1):284
    Heddagaard F E, Møller P. Hazard assessment of small-size plastic particles:Is the conceptual framework of particle toxicology useful?[J]. Food and Chemical Toxicology, 2020, 136:111106
    Besseling E, Wang B, Lürling M, et al. Nanoplastic affects growth of S. obliquus and reproduction of D. magna[J]. Environmental Science & Technology, 2014, 48(20):12336-12343
    Ribeiro F, O'Brien J W, Galloway T, et al. Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms[J]. Trends in Analytical Chemistry, 2019, 111:139-147
    Greven A C, Merk T, Karagöz F, et al. Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas)[J]. Environmental Toxicology and Chemistry, 2016, 35(12):3093-3100
    Ruiz-Palacios M, Almeida M, Martins M A, et al. Establishment of a brain cell line (FuB-1) from mummichog (Fundulus heteroclitus) and its application to fish virology, immunity and nanoplastics toxicology[J]. The Science of the Total Environment, 2020, 708:134821
    Li Z L, Feng C H, Wu Y H, et al. Impacts of nanoplastics on bivalve:Fluorescence tracing of organ accumulation, oxidative stress and damage[J]. Journal of Hazardous Materials, 2020, 392:122418
    Liu Z Q, Li Y M, Sepúlveda M S, et al. Development of an adverse outcome pathway for nanoplastic toxicity in Daphnia pulex using proteomics[J]. The Science of the Total Environment, 2021, 766:144249
    Sendra M, Staffieri E, Yeste M P, et al. Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum?[J]. Environmental Pollution, 2019, 249:610-619
    Bergami E, Pugnalini S, Vannuccini M L, et al. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana[J]. Aquatic Toxicology, 2017, 189:159-169
    Li Y M, Liu Z Q, Li M F, et al. Effects of nanoplastics on antioxidant and immune enzyme activities and related gene expression in juvenile Macrobrachium nipponense[J]. Journal of Hazardous Materials, 2020, 398:122990
    Li Y M, Liu Z Q, Yang Y, et al. Effects of nanoplastics on energy metabolism in the oriental river prawn (Macrobrachium nipponense)[J]. Environmental Pollution, 2021, 268(Pt A):115890
    Pinsino A, Bergami E, Della Torre C, et al. Amino-modified polystyrene nanoparticles affect signalling pathways of the sea urchin (Paracentrotus lividus) embryos[J]. Nanotoxicology, 2017, 11(2):201-209
    Trevisan R, Voy C, Chen S X, et al. Nanoplastics decrease the toxicity of a complex PAH mixture but impair mitochondrial energy production in developing zebrafish[J]. Environmental Science & Technology, 2019, 53(14):8405-8415
    Brandts I, Teles M, Gonçalves A P, et al. Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine[J]. The Science of the Total Environment, 2018, 643:775-784
    Jeong C B, Kang H M, Lee Y H, et al. Nanoplastic ingestion enhances toxicity of persistent organic pollutants (POPs) in the monogonont rotifer Brachionus koreanus via multixenobiotic resistance (MXR) disruption[J]. Environmental Science & Technology, 2018, 52(19):11411-11418
    Peiponen K E, Räty J, Ishaq U, et al. Outlook on optical identification of micro- and nanoplastics in aquatic environments[J]. Chemosphere, 2019, 214:424-429
    Tallec K, Huvet A, di Poi C, et al. Nanoplastics impaired oyster free living stages, gametes and embryos[J]. Environmental Pollution, 2018, 242(Pt B):1226-1235
    S ökmen T Ö, Sulukan E, Türko g[DD(-2.4mm] [HT6] ˇ[HT5"] [] lu M, et al. Polystyrene nanoplastics (20 nm) are able to bioaccumulate and cause oxidative DNA damages in the brain tissue of zebrafish embryo (Danio rerio)[J]. Neurotoxicology, 2020, 77:51-59
    Kelpsiene E, Torstensson O, Ekvall M T, et al. Long-term exposure to nanoplastics reduces life-time in Daphnia magna[J]. Scientific Reports, 2020, 10(1):5979
    Liu Z Q, Li Y M, Pérez E, et al. Polystyrene nanoplastic induces oxidative stress, immune defense, and glycometabolism change in Daphnia pulex:Application of transcriptome profiling in risk assessment of nanoplastics[J]. Journal of Hazardous Materials, 2021, 402:123778
    Feng L J, Sun X D, Zhu F P, et al. Nanoplastics promote microcystin synthesis and release from cyanobacterial Microcystis aeruginosa[J]. Environmental Science & Technology, 2020, 54(6):3386-3394
    Zhao T, Tan L J, Huang W Q, et al. The interactions between micro polyvinyl chloride (mPVC) and marine dinoflagellate Karenia mikimotoi:The inhibition of growth, chlorophyll and photosynthetic efficiency[J]. Environmental Pollution, 2019, 247:883-889
    Singh N, Bhagat J, Tiwari E, et al. Metal oxide nanoparticles and polycyclic aromatic hydrocarbons alter nanoplastic's stability and toxicity to zebrafish[J]. Journal of Hazardous Materials, 2021, 407:124382
    Jeong C B, Won E J, Kang H M, et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus)[J]. Environmental Science & Technology, 2016, 50(16):8849-8857
    Canesi L, Ciacci C, Fabbri R, et al. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment:Role of soluble hemolymph proteins[J]. Environmental Research, 2016, 150:73-81
    Nasser F, Lynch I. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna[J]. Journal of Proteomics, 2016, 137:45-51
    冯立娟. 纳米塑料对典型水生微生物的生物效应与作用机制[D]. 济南:山东大学, 2020:42-60 Feng L J. Biological effects and mechanisms of nanoplastics on typical aquatic microorganisms[D]. Jinan:Shandong University, 2020:42

    -60(in Chinese)

    He J Y, Yang X H, Liu H H. Enhanced toxicity of triphenyl phosphate to zebrafish in the presence of micro- and nano-plastics[J]. Science of the Total Environment, 2021, 756:143986
    Mateos-Cárdenas A, van Pelt F N A M, O'Halloran J, et al. Adsorption, uptake and toxicity of micro- and nanoplastics:Effects on terrestrial plants and aquatic macrophytes[J]. Environmental Pollution, 2021, 284:117183
    吴佳妮, 杨天志, 连加攀, 等. 聚苯乙烯纳米塑料(PSNPs)对大豆(Glycine max)种子发芽和幼苗生长的影响[J]. 环境科学学报, 2020, 40(12):4581-4589

    Wu J N, Yang T Z, Lian J P, et al. Effects of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of soybean (Glycine max)[J]. Acta Scientiae Circumstantiae, 2020, 40(12):4581-4589(in Chinese)

    Zhou C Q, Lu C H, Mai L, et al. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage[J]. Journal of Hazardous Materials, 2021, 401:123412
    连加攀. 聚苯乙烯纳米塑料(PSNPs)对小麦单一及镉联合毒性研究[D]. 天津:南开大学, 2020:25-43 Lian J P. Single and combined toxicity of polystyrene nanoplastics (PSNPs) and cadmium to wheat (Triticum aestivum L.)[D]. Tianjin:Nankai University, 2020:25

    -43(in Chinese)

    黄献培, 向垒, 郭静婕, 等. 聚苯乙烯微球对菜心种子及幼苗的毒性效应[J]. 农业环境科学学报, 2021, 40(5):926-933

    Huang X P, Xiang L, Guo J J, et al. Toxicity of polystyrene microplastics on seeds and seedlings of Brassica campestris L.[J]. Journal of Agro-Environment Science, 2021, 40(5):926-933(in Chinese)

    薛颖昊, 黄宏坤, 靳拓, 等. 土壤微塑料和农药污染及其对土壤动物毒性效应的研究进展[J]. 农业环境科学学报, 2021, 40(2):242-251

    Xue Y H, Huang H K, Jin T, et al. Research progress on microplastic and pesticide pollutions and their toxic effects on soil organisms[J]. Journal of Agro-Environment Science, 2021, 40(2):242-251(in Chinese)

    Zhu B K, Fang Y M, Zhu D, et al. Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus[J]. Environmental Pollution, 2018, 239:408-415
    Ma J, Sheng G D, Chen Q L, et al. Do combined nanoscale polystyrene and tetracycline impact on the incidence of resistance genes and microbial community disturbance in Enchytraeus crypticus?[J]. Journal of Hazardous Materials, 2020, 387:122012
    Lei L L, Liu M T, Song Y, et al. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans[J]. Environmental Science:Nano, 2018, 5(8):2009-2020
    Liu Q Y, Chen C X, Li M T, et al. Neurodevelopmental toxicity of polystyrene nanoplastics in Caenorhabditis elegans and the regulating effect of presenilin[J]. ACS Omega, 2020, 5(51):33170-33177
    Qiu Y X, Luo L B, Yang Y H, et al. Potential toxicity of nanopolystyrene on lifespan and aging process of nematode Caenorhabditis elegans[J]. The Science of the Total Environment, 2020, 705:135918
    Wang S T, Liu H L, Qu M, et al. Response of tyramine and glutamate related signals to nanoplastic exposure in Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2021, 217:112239
    Kim S W, An Y J. Soil microplastics inhibit the movement of springtail species[J]. Environment International, 2019, 126:699-706
    Guimarães A T B, de Lima Rodrigues A S, Pereira P S, et al. Toxicity of polystyrene nanoplastics in dragonfly larvae:An insight on how these pollutants can affect bentonic macroinvertebrates[J]. The Science of the Total Environment, 2021, 752:141936
    Matthews S, Mai L, Jeong C B, et al. Key mechanisms of micro- and nanoplastic (MNP) toxicity across taxonomic groups[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2021, 247:109056
    Sun X M, Chen B J, Li Q F, et al. Toxicities of polystyrene nano- and microplastics toward marine bacterium Halomonas alkaliphila[J]. The Science of the Total Environment, 2018, 642:1378-1385
    Rossi G, Barnoud J, Monticelli L. Polystyrene nanoparticles perturb lipid membranes[J]. The Journal of Physical Chemistry Letters, 2014, 5(1):241-246
    Fringer V S, Fawcett L P, Mitrano D M, et al. Impacts of nanoplastics on the viability and riboflavin secretion in the model bacteria Shewanella oneidensis[J]. Frontiers in Environmental Science, 2020, 8:97
    Saygin H, Baysal A. Similarities and discrepancies between bio-based and conventional submicron-sized plastics:In relation to clinically important bacteria[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 105(1):26-35
    Ustabasi G S, Baysal A. Bacterial interactions of microplastics extracted from toothpaste under controlled conditions and the influence of seawater[J]. Science of the Total Environment, 2020, 703:135024
    Chen W Y, Yuan D, Shan M, et al. Single and combined effects of amino polystyrene and perfluorooctane sulfonate on hydrogen-producing thermophilic bacteria and the interaction mechanisms[J]. The Science of the Total Environment, 2020, 703:135015
    Kumar M, Chen H Y, Sarsaiya S, et al. Current research trends on micro- and nano-plastics as an emerging threat to global environment:A review[J]. Journal of Hazardous Materials, 2021, 409:124967
    Lehner R, Weder C, Petri-Fink A, et al. Emergence of nanoplastic in the environment and possible impact on human health[J]. Environmental Science & Technology, 2019, 53(4):1748-1765
    Teles M, Balasch J C, Oliveira M, et al. Insights into nanoplastics effects on human health[J]. Science Bulletin, 2020, 65(23):1966-1969
    Daroowalla F, Wang M L, Piacitelli C, et al. Flock workers' exposures and respiratory symptoms in five plants[J]. American Journal of Industrial Medicine, 2005, 47(2):144-152
    Hoffman B U, Lumpkin E A. A gut feeling[J]. Science, 2018, 361(6408):1203-1204
    Gopinath P M, Saranya V, Vijayakumar S, et al. Assessment on interactive prospectives of nanoplastics with plasma proteins and the toxicological impacts of virgin, coronated and environmentally released-nanoplastics[J]. Scientific Reports, 2019, 9(1):8860
    Domenech J, Hernández A, Rubio L, et al. Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier[J]. Archives of Toxicology, 2020, 94(9):2997-3012
    闫协民. 聚苯乙烯微塑料/四环素复合污染物对AGS细胞损伤机理研究[D]. 湛江:广东海洋大学, 2020:16-31 Yan X M. A study on the damage mechanism of polystyrene microplastic/tetracycline complex on AGS cells[D]. Zhanjiang:Guangdong Ocean University, 2020:16

    -31(in Chinese)

    Li Y L, Hu Q, Miao G H, et al. Size-dependent mechanism of intracellular localization and cytotoxicity of mono-disperse spherical mesoporous nano- and micron-bioactive glass particles[J]. Journal of Biomedical Nanotechnology, 2016, 12(5):863-877
    Wang Q Q, Bai J L, Ning B A, et al. Effects of bisphenol A and nanoscale and microscale polystyrene plastic exposure on particle uptake and toxicity in human Caco-2 cells[J]. Chemosphere, 2020, 254:126788
    Xu M K, Halimu G, Zhang Q R, et al. Internalization and toxicity:A preliminary study of effects of nanoplastic particles on human lung epithelial cell[J]. The Science of the Total Environment, 2019, 694:133794
    Lim S L, Ng C T, Zou L, et al. Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells[J]. Nanotoxicology, 2019, 13(8):1117-1132
    Hesler M, Aengenheister L, Ellinger B, et al. Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro[J]. Toxicology in Vitro:An International Journal Published in Association with BIBRA, 2019, 61:104610
  • 加载中
计量
  • 文章访问数:  2931
  • HTML全文浏览数:  2931
  • PDF下载数:  131
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-07-27

纳米塑料对生物的毒性效应及作用机制研究进展

    通讯作者: 刘沙沙, E-mail: 2657222877@qq.com
    作者简介: 刘沙沙(1986—),女,博士,研究方向为环境中多环芳烃、微/纳米塑料等污染物的微生物修复及生态毒性效应,E-mail:2657222877@qq.com
  • 肇庆学院环境与化学工程学院, 肇庆 526061
基金项目:

国家自然科学基金资助项目(42007317);广东省基础与应用基础研究基金项目(2019A1515110272);广东省普通高校青年创新人才项目(2018KQNCX294);肇庆学院优秀青年教师科研能力提升计划资助项目(YQ202105);大学生创新创业训练计划项目(202010580014)

摘要: 环境中的纳米塑料污染已成为全球关注的热点。纳米塑料的粒径极小,容易被鱼类、藻类、贝类、蚤类、甲壳类、棘皮类、环节/节肢动物和农作物等生物摄取并沿食物链进行传递,诱发基因毒性、氧化应激、炎症、代谢紊乱、有丝分裂异常、线粒体损伤和细胞凋亡等,进而影响生物的光合作用效率、生长和繁殖、寿命及存活能力;纳米塑料与细菌接触后会破坏菌体细胞膜的完整性,增加活性氧的产生,抑制酶的活性。由于纳米塑料具有较大的比表面积和强疏水性,易与环境中的其他污染物发生相互作用,将重构污染物的生物有效性,从而改变(增加或削减)其对生物的毒性效应。纳米塑料能够诱发人类源细胞系的氧化应激、炎症、代谢紊乱和细胞毒性等,但目前还未见关于纳米塑料对人体的直接毒性效应的报道。

English Abstract

参考文献 (79)

目录

/

返回文章
返回