[1] |
刘佳, 隋铭皓, 朱春艳. 水环境中抗生素的污染现状及其去除方法研究进展[J]. 四川环境, 2011, 30(2): 111-114. doi: 10.3969/j.issn.1001-3644.2011.02.026
|
[2] |
马艳, 高乃云, 周新宇, 等. 典型广谱抗生素的污染现状和处理技术研究进展[J]. 四川环境, 2014, 33(2): 122-126.
|
[3] |
汪煜. 辉光放电等离子体降解水中抗生素的研究[D]. 天津: 天津理工大学, 2013.
|
[4] |
孙子为, 归谈纯, 高乃云, 等. 高级氧化技术降解水体中抗生素的研究进展[J]. 四川环境, 2014, 33(5): 146-153. doi: 10.3969/j.issn.1001-3644.2014.05.028
|
[5] |
BELTRAN F J, ALMUDENA A, GARCIA-ARAYA J F, et al. Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water[J]. Water Research, 2008, 42(14): 3799-3808. doi: 10.1016/j.watres.2008.07.019
|
[6] |
KUANG J M, HUANG J, WANG B, et al. Ozonation of trimethoprim in aqueous solution: Identification of reaction products and their toxicity[J]. Water Research, 2013, 47(8): 2863-2872. doi: 10.1016/j.watres.2013.02.048
|
[7] |
汪艳宁, 卢广宁. UV/Fenton法降解四环素废水的试验研究[J]. 天津城建大学学报, 2011, 17(4): 260-263. doi: 10.3969/j.issn.1006-6853.2011.04.009
|
[8] |
赵海洋. 脉冲放电等离子体处理难降解有机物[D]. 上海: 复旦大学, 2011.
|
[9] |
何俊. 介质阻挡放电等离子体-生化法处理印染废水的研究[D]. 上海: 东华大学, 2014.
|
[10] |
荣少鹏. 湿壁式介质阻挡放电等离子体对水中磺胺嘧啶的去除研究[D]. 南京: 南京大学, 2014.
|
[11] |
何东, 孙亚兵, 冯景伟, 等. 电晕放电等离子体技术处理水中四环素的研究[J]. 环境科学学报, 2014, 34(9): 2219-2225.
|
[12] |
张路路, 黄娅妮, 王刚, 等. 滑动弧等离子体处理三种染料废水的研究[J]. 环境工程, 2016, 34(12): 48-52.
|
[13] |
杜长明, 严建华, 李晓东, 等. 气液两相流滑动弧放电降解苯酚废水[J]. 工程热物理学报, 2005, 26(3): 534-536. doi: 10.3321/j.issn:0253-231X.2005.03.052
|
[14] |
王保伟, 王超, 徐艳, 等. 介质阻挡放电等离子体反应器降解盐酸四环素[J]. 化工学报, 2018, 69(4): 1687-1694.
|
[15] |
杨长河, 曹志荣, 丁堃, 等. 介质阻挡放电等离子体处理酸性大红GR废水[J]. 水处理技术, 2012, 38(5): 96-100. doi: 10.3969/j.issn.1000-3770.2012.05.025
|
[16] |
王兆均. 脉冲介质阻挡放电等离子体处理废水的研究[D]. 上海: 复旦大学, 2013.
|
[17] |
王保伟, 彭叶平, 姚淑美. 降膜介质阻挡放电等离子体降解甲基橙研究[J]. 高校化学工程学报, 2018, 32(5): 1203-1209. doi: 10.3969/j.issn.1003-9015.2018.05.028
|
[18] |
WANG B, XU M, CHI C, et al. Degradation of methyl orange using dielectric barrier discharge water falling film reactor[J]. Journal of Advanced Oxidation Technologies, 2017, 20(2): 1-11.
|
[19] |
XU H, LIU D, XIA W, et al. Comparison between the water activation effects by pulsed and sinusoidal helium plasma jets[J]. Physics of Plasmas, 2018, 25(1): 1-6. doi: 10.1063/1.5016510
|
[20] |
SINGH R K, PHILIP L, RAMANUJAM S. Removal of 2,4-dichlorophenoxyacetic acid in aqueous solution by pulsed corona discharge treatment: Effect of different water constituents, degradation pathway and toxicity assay[J]. Chemosphere, 2017, 184: 207-214. doi: 10.1016/j.chemosphere.2017.05.134
|
[21] |
BAI Z Y, QI Y, WANG J L. Degradation of sulfamethazine antibiotics in Fenton-like system using Fe3O4 magnetic nanoparticles as catalyst[J]. Environmental Progress & Sustainable Energy, 2017, 36(6): 1-11.
|
[22] |
TIJANI J O, FATOBA O O, MADZIVIRE G, et al. A review of combined advanced oxidation technologies for the removal of organic pollutants from water[J]. Water, Air & Soil Pollution, 2014, 225(9): 1-30.
|
[23] |
JIANG B, ZHENG J T, QIU S, et al. Review on electrical discharge plasma technology for wastewater remediation[J]. Chemical Engineering Journal, 2014, 236: 348-368. doi: 10.1016/j.cej.2013.09.090
|
[24] |
YANG L, YANG L Y. Research progress of water treatment by advanced oxidation technology[J]. Advanced Materials Research, 2013, 864-867: 2096-2099. doi: 10.4028/www.scientific.net/AMR.864-867.2096
|
[25] |
MONICA M, PIROI D, MANDACHE N B, et al. Degradation of pharmaceutical compound pentoxifylline in water by non-thermal plasma treatment[J]. Water Research, 2010, 44(11): 3445-3453. doi: 10.1016/j.watres.2010.03.020
|
[26] |
MONICA M, MANDACHE N B, CORINA B, et al. High efficiency plasma treatment of water contaminated with organic compounds. Study of the degradation of ibuprofen[J]. Plasma Processes & Polymers, 2018, 15(6): 1-9.
|
[27] |
HAMAAZIZ K H, MIESSNER H, MUELLER S, et al. Comparative study on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor[J]. Journal of Hazardous Materials, 2017, 343: 107-115.
|
[28] |
MOSHKOV M J, PILISZCZUK M, ZIELOSKO B, et al. On construction of partial association rules[J]. Science of the Total Environment, 2015, 505: 1148-1155. doi: 10.1016/j.scitotenv.2014.11.017
|
[29] |
崔运秋. 不同参数特性的电源驱动等离子体放电去除水中四环素的研究[D]. 北京: 北京印刷学院, 2019.
|
[30] |
周建刚, 严立, 杨虹, 等. 介质阻挡放电中的位移电流[J]. 大连海事大学学报, 2003, 29(2): 104-106. doi: 10.3969/j.issn.1006-7736.2003.02.028
|
[31] |
王新新. 介质阻挡放电及其应用[J]. 高电压技术, 2009, 35(1): 1-11.
|
[32] |
邓续周. 高气压介质阻挡均匀辉光放电的产生及其特性研究[D]. 上海: 复旦大学, 2008.
|
[33] |
刘春芳, 王燚, 黄承志. 基于金纳米颗粒等离子体共振吸收的典型四环素类药物分析方法[J]. 科学通报, 2012, 57(1): 52-58.
|
[34] |
张艳. 高压脉冲放电等离子体对水中土霉素的降解研究[D]. 南京: 南京大学, 2014.
|
[35] |
VANRAES P, GHODBANE H, DAVISTER D, et al. Removal of several pesticides in a falling water film DBD reactor with activated carbon textile: Energy efficiency[J]. Water Research, 2017, 116: 1-12. doi: 10.1016/j.watres.2017.03.004
|
[36] |
万方. 脉冲电催化氧化降解四环素类抗生素的机理研究[D]. 武汉: 华中科技大学, 2012.
|
[37] |
周波, 王晓静, 孙才新. 电极结构对介质阻挡放电参数的影响研究[J]. 高压电器, 2010, 46(4): 31-34.
|
[38] |
王辉, 孙岩洲, 方志, 等. 不同电极结构下介质阻挡放电的特性研究[J]. 高压电器, 2006, 42(1): 25-27. doi: 10.3969/j.issn.1001-1609.2006.01.008
|
[39] |
CUI Y Q, CHENG J S, CHEN Q, et al. The types of plasma reactors in wastewater treatment[C]//Hubei Xinwensheng Conference Co. Ltd. 2018 International Conference on Frontiers of Materials, Energy, Environmental Science. IOP Conference Series: Materials Science and Engineering. Nanchang, 2018: 208.
|
[40] |
郑培超, 刘克铭, 王金梅, 等. 大气压液体阴极等离子体中O原子和OH自由基的特性[J]. 高电压技术, 2014, 40(7): 2065-2070.
|
[41] |
QI Z H, TIAN E Q, SONG Y, et al. Inactivation of Shewanella putrefaciens by plasma activated water[J]. Plasma Chemistry and Plasma Processing, 2018, 38(5): 1035-1050. doi: 10.1007/s11090-018-9911-5
|
[42] |
WANG B W, DONG B, XU M, et al. Degradation of methylene blue using double-chamber dielectric barrier discharge reactor under different carrier gases[J]. Chemical Engineering Science, 2017, 168: 90-100. doi: 10.1016/j.ces.2017.04.027
|
[43] |
宋玲. 气相介质阻挡放电活性粒子喷射降解水中有机污染物的研究[D]. 大连: 大连理工大学, 2008.
|
[44] |
WANG C, QU G Z, WANG T C, et al. Removal of tetracycline antibiotics from wastewater by pulsed corona discharge plasma coupled with natural soil particles[J]. Chemical Engineering Journal, 2018, 346: 159-170. doi: 10.1016/j.cej.2018.03.149
|
[45] |
陈泽煜, 刘定新, 徐晗, 等. 氦等离子体射流液相活性粒子的生成机制的分解分析[C]// 中国力学学会. 第十八届全国等离子体科学技术会议摘要集. 西安, 2017.
|
[46] |
鲍平. 等离子体活性物质与培养基中细胞交互作用的动态过程研究[D]. 武汉: 华中科技大学, 2016.
|
[47] |
JIN X L, WANG X Y, REN H X, et al. Degradation of oxytetracycline in aqueous solution with contact glow discharge electrolysis[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2015, 48(5): 13-20.
|