-
近年来,随着社会的发展和人们日常生活水平的提高,人体和动物对抗生素药品使用量不断增长。抗生素的普及使用带来便利的同时,其对水体的污染问题不容忽视。抗生素类药物进入水环境,危害水中生物以及污染人类的生活用水[1-2]。面临日益严重的水质问题,亟需研究出高效、经济的抗生素污染水处理技术。
高级氧化技术(advanced oxidation technology,AOP)包括臭氧、光催化、Fenton氧化法和非热等离子体技术[3],已被证实可以降解废水中的抗生素。关于臭氧化降解[4]的报道,BELTRAN等[5]采用臭氧对水中磺胺甲恶唑进行处理,KUANG等[6]研究甲氧苄氨嘧啶在水溶液中的臭氧氧化过程,发现总有机碳(total organic carbon,TOC)去除率较低(10%和0)。光催化降解法[3]对微量有机抗生素的去除有明显的优势。但整个体系对光能的吸收和水体的透光性均有特定的要求,限制了其大规模应用。Fenton氧化法对反应体系的pH要求较高,且对过氧化氢的利用率较低[3-4, 7]。以上方法在应用上均有不同程度的限制和问题[8]。非热等离子体技术通过放电形成的高能电子、离子、活性自由基、激发态原子和分子等参与化学反应[9],同时产生光、热、电等物理效应,共同作用降解废水中的抗生素[3, 10-11]。电晕[11]、辉光[1]、滑动弧[12-13]及介质阻挡放电(dielectric barrier discharge,DBD)等都是有效降解水中有机污染物方法[14-15]。DBD设备通常可形成较大面积均匀放电,在操作和控制方面具有明显优势[16],介质层可防止形成局部火花或者弧光放电,使运行安全稳定,从而被广泛的应用。
目前,DBD放电装置应用于水处理时,主要采用针-板式、线-板式以及环-筒式等结构[16]。本研究通过进一步改进同轴-圆筒式大气压降膜[17-18]DBD反应器,反应器有效放电面积较大,与从前的等离子体降解研究[19-25]相比,可处理废水的体积增多,并且与循环下降水膜有较大接触面,更有利于氧化物种从气相到液相的良好传递[25-28]。本研究探究了反应体系中外加电压、气体流量、液体流量、初始pH及电极结构等参数对四环素降解效果的影响,同时检测了降解过程中不同时段的pH和电导率变化,通过UV-vis光谱和高效液相色谱-质谱对中间产物的表征,推测出四环素降解的可能反应过程和降解机制。研究结果为实现大面积、工业级的有机抗生素废水的处理,保护水生生态环境提供参考。
大气压降膜DBD等离子体去除废水中四环素
Removal of tetracycline from wastewater by atmospheric pressure falling film dielectric barrier discharge plasma
-
摘要: 水体中抗生素类药物污染主要来源于人体和动物的大量使用,为改善水环境,降低和去除水中抗生素类药物,设计了可进行较大体积水中四环素的有效去除大气压降膜介质阻挡放电(dielectric barrier discharge)装置,研究了等离子体对四环素模拟液的降解特性,并分析了其降解机理。结果表明,当初始浓度为100 mg·L−1,等离子体处理四环素溶液10 min,去除率为90%,化学需氧量去除率为45%,能量效率达到3.16 g·(kWh)−1。较高的能量效率源自放电产生大量的活性物种(高能电子、离子、自由基等)。采用紫外可见分光光度法和液相色谱-质谱等检测方法对水样进行了分析,当等离子体放电处理2 min后,四环素溶液中开始生成新的物质,随着放电时间的延长,新物质种类和产量也随之逐渐增加,直至水中四环素接近完全降解。研究结果为实现大面积、工业级的有机抗生素废水的处理,保护水生生态环境提供了参考。
-
关键词:
- 大气压降膜介质阻挡放电 /
- 四环素降解 /
- 分解机理 /
- 废水处理
Abstract: Antibiotics pollution in water mainly comes from the extensive use of human and animals. In order to improve water environment, reduce and remove antibiotics in water, an atmospheric falling film dielectric barrier discharge (DBD) device with coaxial cylinder was set up to remove the tetracycline in the large volumetric water. The degradation characteristics of tetracycline by plasma were discussed and the corresponding degradation mechanism was analyzed. The results showed that when the concentration of tetracycline was 100 mg·L−1, the removal rates of tetracycline and COD reached 90% and 45% after only 10 minutes treatment, respectively, and the energy efficiency reached 3.16 g·(kWh)−1. This high energy efficiency resulted from a large number of active species of high-energy electrons, ions, free radicals, etc. generated in the discharge process. The treated water samples were characterized by in-situ UV-vis spectrophotometer, pH meter, conductivity meter and liquid chromatography-mass spectrometry, the new intermediate products appeared after 2 min treatment. With the extension of electro-discharge time, the types and amount of new products increased until tetracycline was nearly completely decomposed. The above results provide a scientific basis for the treatment of large-scale and industrial-grade organic antibiotic wastewater and water ecological environment protection. -
-
[1] 刘佳, 隋铭皓, 朱春艳. 水环境中抗生素的污染现状及其去除方法研究进展[J]. 四川环境, 2011, 30(2): 111-114. doi: 10.3969/j.issn.1001-3644.2011.02.026 [2] 马艳, 高乃云, 周新宇, 等. 典型广谱抗生素的污染现状和处理技术研究进展[J]. 四川环境, 2014, 33(2): 122-126. [3] 汪煜. 辉光放电等离子体降解水中抗生素的研究[D]. 天津: 天津理工大学, 2013. [4] 孙子为, 归谈纯, 高乃云, 等. 高级氧化技术降解水体中抗生素的研究进展[J]. 四川环境, 2014, 33(5): 146-153. doi: 10.3969/j.issn.1001-3644.2014.05.028 [5] BELTRAN F J, ALMUDENA A, GARCIA-ARAYA J F, et al. Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water[J]. Water Research, 2008, 42(14): 3799-3808. doi: 10.1016/j.watres.2008.07.019 [6] KUANG J M, HUANG J, WANG B, et al. Ozonation of trimethoprim in aqueous solution: Identification of reaction products and their toxicity[J]. Water Research, 2013, 47(8): 2863-2872. doi: 10.1016/j.watres.2013.02.048 [7] 汪艳宁, 卢广宁. UV/Fenton法降解四环素废水的试验研究[J]. 天津城建大学学报, 2011, 17(4): 260-263. doi: 10.3969/j.issn.1006-6853.2011.04.009 [8] 赵海洋. 脉冲放电等离子体处理难降解有机物[D]. 上海: 复旦大学, 2011. [9] 何俊. 介质阻挡放电等离子体-生化法处理印染废水的研究[D]. 上海: 东华大学, 2014. [10] 荣少鹏. 湿壁式介质阻挡放电等离子体对水中磺胺嘧啶的去除研究[D]. 南京: 南京大学, 2014. [11] 何东, 孙亚兵, 冯景伟, 等. 电晕放电等离子体技术处理水中四环素的研究[J]. 环境科学学报, 2014, 34(9): 2219-2225. [12] 张路路, 黄娅妮, 王刚, 等. 滑动弧等离子体处理三种染料废水的研究[J]. 环境工程, 2016, 34(12): 48-52. [13] 杜长明, 严建华, 李晓东, 等. 气液两相流滑动弧放电降解苯酚废水[J]. 工程热物理学报, 2005, 26(3): 534-536. doi: 10.3321/j.issn:0253-231X.2005.03.052 [14] 王保伟, 王超, 徐艳, 等. 介质阻挡放电等离子体反应器降解盐酸四环素[J]. 化工学报, 2018, 69(4): 1687-1694. [15] 杨长河, 曹志荣, 丁堃, 等. 介质阻挡放电等离子体处理酸性大红GR废水[J]. 水处理技术, 2012, 38(5): 96-100. doi: 10.3969/j.issn.1000-3770.2012.05.025 [16] 王兆均. 脉冲介质阻挡放电等离子体处理废水的研究[D]. 上海: 复旦大学, 2013. [17] 王保伟, 彭叶平, 姚淑美. 降膜介质阻挡放电等离子体降解甲基橙研究[J]. 高校化学工程学报, 2018, 32(5): 1203-1209. doi: 10.3969/j.issn.1003-9015.2018.05.028 [18] WANG B, XU M, CHI C, et al. Degradation of methyl orange using dielectric barrier discharge water falling film reactor[J]. Journal of Advanced Oxidation Technologies, 2017, 20(2): 1-11. [19] XU H, LIU D, XIA W, et al. Comparison between the water activation effects by pulsed and sinusoidal helium plasma jets[J]. Physics of Plasmas, 2018, 25(1): 1-6. doi: 10.1063/1.5016510 [20] SINGH R K, PHILIP L, RAMANUJAM S. Removal of 2,4-dichlorophenoxyacetic acid in aqueous solution by pulsed corona discharge treatment: Effect of different water constituents, degradation pathway and toxicity assay[J]. Chemosphere, 2017, 184: 207-214. doi: 10.1016/j.chemosphere.2017.05.134 [21] BAI Z Y, QI Y, WANG J L. Degradation of sulfamethazine antibiotics in Fenton-like system using Fe3O4 magnetic nanoparticles as catalyst[J]. Environmental Progress & Sustainable Energy, 2017, 36(6): 1-11. [22] TIJANI J O, FATOBA O O, MADZIVIRE G, et al. A review of combined advanced oxidation technologies for the removal of organic pollutants from water[J]. Water, Air & Soil Pollution, 2014, 225(9): 1-30. [23] JIANG B, ZHENG J T, QIU S, et al. Review on electrical discharge plasma technology for wastewater remediation[J]. Chemical Engineering Journal, 2014, 236: 348-368. doi: 10.1016/j.cej.2013.09.090 [24] YANG L, YANG L Y. Research progress of water treatment by advanced oxidation technology[J]. Advanced Materials Research, 2013, 864-867: 2096-2099. doi: 10.4028/www.scientific.net/AMR.864-867.2096 [25] MONICA M, PIROI D, MANDACHE N B, et al. Degradation of pharmaceutical compound pentoxifylline in water by non-thermal plasma treatment[J]. Water Research, 2010, 44(11): 3445-3453. doi: 10.1016/j.watres.2010.03.020 [26] MONICA M, MANDACHE N B, CORINA B, et al. High efficiency plasma treatment of water contaminated with organic compounds. Study of the degradation of ibuprofen[J]. Plasma Processes & Polymers, 2018, 15(6): 1-9. [27] HAMAAZIZ K H, MIESSNER H, MUELLER S, et al. Comparative study on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor[J]. Journal of Hazardous Materials, 2017, 343: 107-115. [28] MOSHKOV M J, PILISZCZUK M, ZIELOSKO B, et al. On construction of partial association rules[J]. Science of the Total Environment, 2015, 505: 1148-1155. doi: 10.1016/j.scitotenv.2014.11.017 [29] 崔运秋. 不同参数特性的电源驱动等离子体放电去除水中四环素的研究[D]. 北京: 北京印刷学院, 2019. [30] 周建刚, 严立, 杨虹, 等. 介质阻挡放电中的位移电流[J]. 大连海事大学学报, 2003, 29(2): 104-106. doi: 10.3969/j.issn.1006-7736.2003.02.028 [31] 王新新. 介质阻挡放电及其应用[J]. 高电压技术, 2009, 35(1): 1-11. [32] 邓续周. 高气压介质阻挡均匀辉光放电的产生及其特性研究[D]. 上海: 复旦大学, 2008. [33] 刘春芳, 王燚, 黄承志. 基于金纳米颗粒等离子体共振吸收的典型四环素类药物分析方法[J]. 科学通报, 2012, 57(1): 52-58. [34] 张艳. 高压脉冲放电等离子体对水中土霉素的降解研究[D]. 南京: 南京大学, 2014. [35] VANRAES P, GHODBANE H, DAVISTER D, et al. Removal of several pesticides in a falling water film DBD reactor with activated carbon textile: Energy efficiency[J]. Water Research, 2017, 116: 1-12. doi: 10.1016/j.watres.2017.03.004 [36] 万方. 脉冲电催化氧化降解四环素类抗生素的机理研究[D]. 武汉: 华中科技大学, 2012. [37] 周波, 王晓静, 孙才新. 电极结构对介质阻挡放电参数的影响研究[J]. 高压电器, 2010, 46(4): 31-34. [38] 王辉, 孙岩洲, 方志, 等. 不同电极结构下介质阻挡放电的特性研究[J]. 高压电器, 2006, 42(1): 25-27. doi: 10.3969/j.issn.1001-1609.2006.01.008 [39] CUI Y Q, CHENG J S, CHEN Q, et al. The types of plasma reactors in wastewater treatment[C]//Hubei Xinwensheng Conference Co. Ltd. 2018 International Conference on Frontiers of Materials, Energy, Environmental Science. IOP Conference Series: Materials Science and Engineering. Nanchang, 2018: 208. [40] 郑培超, 刘克铭, 王金梅, 等. 大气压液体阴极等离子体中O原子和OH自由基的特性[J]. 高电压技术, 2014, 40(7): 2065-2070. [41] QI Z H, TIAN E Q, SONG Y, et al. Inactivation of Shewanella putrefaciens by plasma activated water[J]. Plasma Chemistry and Plasma Processing, 2018, 38(5): 1035-1050. doi: 10.1007/s11090-018-9911-5 [42] WANG B W, DONG B, XU M, et al. Degradation of methylene blue using double-chamber dielectric barrier discharge reactor under different carrier gases[J]. Chemical Engineering Science, 2017, 168: 90-100. doi: 10.1016/j.ces.2017.04.027 [43] 宋玲. 气相介质阻挡放电活性粒子喷射降解水中有机污染物的研究[D]. 大连: 大连理工大学, 2008. [44] WANG C, QU G Z, WANG T C, et al. Removal of tetracycline antibiotics from wastewater by pulsed corona discharge plasma coupled with natural soil particles[J]. Chemical Engineering Journal, 2018, 346: 159-170. doi: 10.1016/j.cej.2018.03.149 [45] 陈泽煜, 刘定新, 徐晗, 等. 氦等离子体射流液相活性粒子的生成机制的分解分析[C]// 中国力学学会. 第十八届全国等离子体科学技术会议摘要集. 西安, 2017. [46] 鲍平. 等离子体活性物质与培养基中细胞交互作用的动态过程研究[D]. 武汉: 华中科技大学, 2016. [47] JIN X L, WANG X Y, REN H X, et al. Degradation of oxytetracycline in aqueous solution with contact glow discharge electrolysis[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2015, 48(5): 13-20.