[1] |
JEFF F, YUAN Z G, PAUL L. Dissolved methane in rising main sewer systems: Field measurements and simple model development for estimating greenhouse gas emissions[J]. Water Science and Technology, 2009, 60(11): 2963-2971. doi: 10.2166/wst.2009.718
|
[2] |
GUISASOLA A, HAAS D D, KELLER J, et al. Methane formation in sewer systems[J]. Water Research, 2008, 42(6/7): 1421-1430.
|
[3] |
SHARMA K R, YUAN Z G, HAAS D D, et al. Dynamics and dynamic modelling of H2S production in sewer systems[J]. Water Research, 2008, 42(10/11): 2527-2538.
|
[4] |
SUN J, HU S H, SHARMA K R, et al. Stratified microbial structure and activity in sulfide and methane-producing anaerobic sewer biofilms[J]. Applied and Environmental Microbiology, 2014, 80(22): 7042-7052. doi: 10.1128/AEM.02146-14
|
[5] |
SUTHERLAND-STACEY L, CORRIE S, NEETHLING A, et al. Continuous measurement of dissolved sulfide in sewer systems[J]. Water Science and Technology, 2008, 57(3): 375-381. doi: 10.2166/wst.2008.132
|
[6] |
BOON A G. Septicity in sewers: Causes, consequences and containment[J]. Water Science and Technology, 1995, 31(7): 237-253. doi: 10.2166/wst.1995.0240
|
[7] |
ROBERTS D J, NICA D, ZUO G, et al. Quantifying microbially induced deterioration of concrete: Initial studies[J]. International Biodeterioration and Biodegradation, 2002, 49(4): 227-234. doi: 10.1016/S0964-8305(02)00049-5
|
[8] |
许小冰, 王怡, 王社平, 等. 城市排水管道中有害气体控制的国内外研究现状[J]. 中国给水排水, 2012, 28(14): 9-12. doi: 10.3969/j.issn.1000-4602.2012.14.003
|
[9] |
MUEZZINOGLU A. A study of volatile organic sulfur emissions causing urban odors[J]. Chemosphere, 2003, 51(4): 245-252. doi: 10.1016/S0045-6535(02)00821-4
|
[10] |
ÆSØY A, ØDEGAARD H, BENTZEN G. The effect of sulphide and organic matter on the nitrification activity in a biofilm process[J]. Water Science and Technology, 1998, 37(1): 115-122. doi: 10.2166/wst.1998.0028
|
[11] |
GANIGUE R, GUTIERREZ O, ROOTSEY R, et al. Chemical dosing for sulfide control in Australia: An industry survey[J]. Water Research, 2011, 45(19): 6564-6574. doi: 10.1016/j.watres.2011.09.054
|
[12] |
ZHANG L H, SCHRYVER P D, GUSSEME B D, et al. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review[J]. Water Research, 2008, 42(1/2): 1-12.
|
[13] |
GANIGUÉ R, YUAN Z G. Impact of oxygen injection on CH4 and N2O emissions from rising main sewers[J]. Journal of Environmental Management, 2014, 144: 279-285. doi: 10.1016/j.jenvman.2014.04.023
|
[14] |
GUTIERREZ O, MOHANAKRISHNAN J, SHARMA K R, et al. Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system[J]. Water Research, 2008, 42(17): 4549-4561. doi: 10.1016/j.watres.2008.07.042
|
[15] |
JIANG G M, SHARMA K R, YUAN Z G. Effects of nitrate dosing on methanogenic activity in a sulfide-producing sewer biofilm reactor[J]. Water Research, 2013, 47(5): 1783-1792. doi: 10.1016/j.watres.2012.12.036
|
[16] |
JIANG G M, GUTIERREZ O, SHARMA K R, et al. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems[J]. Water Research, 2010, 44(14): 4241-4251. doi: 10.1016/j.watres.2010.05.030
|
[17] |
AUGUET O, PIJUAN M, BORREGO C M, et al. Control of sulfide and methane production in anaerobic sewer systems by means of downstream nitrite dosage[J]. Science of the Total Environment, 2016, 550: 1116-1125. doi: 10.1016/j.scitotenv.2016.01.130
|
[18] |
ZHANG L S, KELLER J, YUAN Z G. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing[J]. Water Research, 2009, 43(17): 4123-4132. doi: 10.1016/j.watres.2009.06.013
|
[19] |
FIRER D, FRIEDLER E, LAHAV O. Control of sulfide in sewer systems by dosage of iron salts: Comparison between theoretical and experimental results, and practical implications[J]. Science of the Total Environment, 2008, 392(1): 145-156. doi: 10.1016/j.scitotenv.2007.11.008
|
[20] |
GUTIERREZ O, PARK D, SHARMA K R, et al. Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms[J]. Water Research, 2009, 43(9): 2549-2557. doi: 10.1016/j.watres.2009.03.008
|
[21] |
GUTIERREZ O, SUDARJANTO G, REN G, et al. Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems[J]. Water Research, 2014, 48: 569-578. doi: 10.1016/j.watres.2013.10.021
|
[22] |
MORENO L, PREDICALA B, NEMATI M. Laboratory, semi-pilot and room scale study of nitrite and molybdate mediated control of H2S emission from swine manure[J]. Bioresource Technology, 2010, 101(7): 2141-2151. doi: 10.1016/j.biortech.2009.11.011
|
[23] |
OKABE S, ITO T, SATOH H, et al. Effect of nitrite and nitrate on biogenic sulfide production in sewer biofilms determined by the use of microelectrodes[J]. Water Science and Technology, 2003, 47(11): 281-288. doi: 10.2166/wst.2003.0616
|
[24] |
BENTZEN G, SMIT A T, BENNETT D, et al. Controlled dosing of nitrate for prevention of H2S in a sewer network and the effects on the subsequent treatment processes[J]. Water Science and Technology, 1995, 31(7): 293-302. doi: 10.2166/wst.1995.0245
|
[25] |
DAVIDOVA I, HICKS M S, FEDORAK P M, et al. The influence of nitrate on microbial processes in oil industry production waters[J]. Journal of Industrial Microbiology and Biotechnology, 2001, 27(2): 80-86. doi: 10.1038/sj.jim.7000166
|
[26] |
YANG W, VOLLERTSEN J, HVITVED-JACOBSEN T. Anoxic sulfide oxidation in wastewater of sewer networks[J]. Water Science and Technology, 2005, 52(3): 191-199. doi: 10.2166/wst.2005.0076
|
[27] |
MOHANAKRISHNAN J, GUTIERREZ O, SHARMA K R, et al. Impact of nitrate addition on biofilm properties and activities in rising main sewers[J]. Water Research, 2009, 43(17): 4225-4237. doi: 10.1016/j.watres.2009.06.021
|
[28] |
LIU Y W, SHARMA K R, NI B J, et al. Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment[J]. Water Research, 2015, 74: 155-165. doi: 10.1016/j.watres.2015.02.017
|
[29] |
PARK K, LEE H, PHELAN S, et al. Mitigation strategies of hydrogen sulphide emission in sewer networks: A review[J]. International Biodeterioration and Biodegradation, 2014, 95: 251-261. doi: 10.1016/j.ibiod.2014.02.013
|
[30] |
NIELSEN P H, RAUNKJÆR K, NORSKER N H, et al. Transformation of wastewater in sewer systems: A review[J]. Water Science and Technology, 2015, 25(6): 17-31.
|
[31] |
WIERINGA K T. The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria[J]. Antonie Van Leeuwenhoek, 1939, 6(1): 251-262. doi: 10.1007/BF02146190
|
[32] |
PODUSKA R A, ANDERSON B D. Successful storage lagoon odor control[J]. Water Pollution Control Federation, 1981, 53(3): 299-310.
|
[33] |
JIANG G M, SHARMA K R, GUISASOLA A, et al. Sulfur transformation in rising main sewers receiving nitrate dosage[J]. Water Research, 2009, 43(17): 4430-4440. doi: 10.1016/j.watres.2009.07.001
|
[34] |
LI W, ZHAO Q L, LIU H. Sulfide removal by simultaneous autotrophic and heterotrophic desulfurization-denitrification process[J]. Journal of Hazardous Materials, 2009, 162(2/3): 848-853.
|
[35] |
MATHIOUDAKIS V L, VAIOPOULOU E, AIVASIDIS A, et al. Addition of nitrates for odor control in sewer networks: Laboratory and field experiments[J]. Global Nest, 2006, 8(1): 37-42.
|
[36] |
YANG W, VOLLERTSEN J, HVITVED-JACOBSEN T. Anoxic control of odour and corrosion from sewer networks[J]. Water Science and Technology, 2004, 50(4): 341-349. doi: 10.2166/wst.2004.0300
|
[37] |
LIU Y C, WU C, ZHOU X H, et al. Sulfide elimination by intermittent nitrate dosing in sewer sediments[J]. Journal of Environmental Sciences, 2015, 27(1): 259-265.
|
[38] |
AUGUET O, PIJUAN M, GUASCH-BALCELLS H, et al. Implications of downstream nitrate dosage in anaerobic sewers to control sulfide and methane emissions[J]. Water Research, 2015, 68(1): 522-532.
|
[39] |
RODRÍGUEZ-GÓMEZ L E, DELGADO S, ÁLVAREZ M, et al. Inhibition of sulfide generation in a reclaimed wastewater pipe by nitrate dosage and denitrification kinetics[J]. Water Environment Research, 2005, 77(2): 193-198. doi: 10.2175/106143005X41762
|
[40] |
SARACEVIC E, BERTRÁN D L F, MATSCHÉ N. Odour and corrosion problems in pressure sewers[J]. Water Practice and Technology, 2007, 2(1): 115-123.
|
[41] |
HENZE M, GUJER W, MINO T, et al. Activated sludge model No.2d, ASM2D[J]. Water Science and Technology, 1999, 39(1): 165-182. doi: 10.2166/wst.1999.0036
|
[42] |
ABDUL-TALIB S, HVITVED-JACOBSEN T, VOLLERTSEN J, et al. Half saturation constants for nitrate and nitrite by in-sewer anoxic transformations of wastewater organic matter[J]. Water Science and Technology, 2002, 46(9): 185-192. doi: 10.2166/wst.2002.0236
|
[43] |
ABDUL-TALIB S, UJANG Z, VOLLERTSEN J, et al. Model concept for nitrate and nitrite utilization during anoxic transformation in the bulk water phase of municipal wastewater under sewer conditions[J]. Water Science and Technology, 2005, 52(3): 181-189. doi: 10.2166/wst.2005.0075
|
[44] |
VOLLERTSEN J, HVITVED-JACOBSEN T, UJANG Z, et al. Integrated design of sewers and wastewater treatment plants[J]. Water Science and Technology, 2002, 46(9): 11-20. doi: 10.2166/wst.2002.0194
|
[45] |
EDDIE C, JAAP V R, ANDREAS S, et al. Identification of bacteria potentially responsible for oxic and anoxic sulfide oxidation in biofilters of a recirculating mariculture system[J]. Applied and Environmental Microbiology, 2005, 71(10): 6134-6141. doi: 10.1128/AEM.71.10.6134-6141.2005
|
[46] |
BRUCE R A, ACHENBACH L A, COATES J D. Reduction of (per)chlorate by a novel organism isolated from paper mill waste[J]. Environmental Microbiology, 1999, 1(4): 319-329. doi: 10.1046/j.1462-2920.1999.00042.x
|
[47] |
BOWMAN J P, SLY L I, NICHOLS P D, et al. Revised taxonomy of the methanotrophs: Description of methylobacter gen. nov., emendation of methylococcus, validation of methylosinus and methylocystis species, and a proposal that the family methylococcaceae includes only the group I methanotrophs[J]. International Journal of Systematic and Evolutionary Microbiology, 1993, 43(4): 735-753.
|
[48] |
KITS K D, KALYUZHNAYA M G, KLOTZ M G, et al. Genome sequence of the obligate gammaproteobacterial methanotroph methylomicrobium album strain BG8[J]. Genome Announcements, 2013, 1(2): 11-12.
|
[49] |
OKABE S, ITOH T, SATOH H., et al Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms[J]. Applied and Environmental Microbiology, 1999, 65: 5107-5116. doi: 10.1128/AEM.65.11.5107-5116.1999
|
[50] |
KLEINJAN W E, LAMMERS J N J J, KEIZER A D, et al. Effect of biologically produced sulfur on gas absorption in a biotechnological hydrogen sulfide removal process[J]. Biotechnology and Bioengineering, 2006, 94(4): 633-644. doi: 10.1002/bit.20855
|
[51] |
ABDUL-TALIB S, HVITVED-JACOBSEN T, VOLLERTSEN J, et al. Anoxic transformations of wastewater organic matter in sewers: Process kinetics, model concept and wastewater treatment potential[J]. Water Science and Technology, 2002, 45(3): 53-60. doi: 10.2166/wst.2002.0053
|
[52] |
袁伟玲, 曹凑贵, 李成芳, 等. 稻鸭、稻鱼共作生态系统CH4和N2O温室效应及经济效益评估[J]. 中国农业科学, 2009, 42(6): 2052-2060. doi: 10.3864/j.issn.0578-1752.2009.06.022
|
[53] |
BARTACEK J, MANCONI I, SANSONE G, et al. Divalent metal addition restores sulfide-inhibited N2O reduction in pseudomonas aeruginosa[J]. Nitric Oxide, 2010, 23(2): 101-105. doi: 10.1016/j.niox.2010.04.005
|
[54] |
PAN Y T, YE L, YUAN Z G. Effect of H2S on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers[J]. Environmental Science and Technology, 2013, 47(15): 8408-8415.
|
[55] |
SCHONHARTING B, METZGER J W, KRAUTH K, et al. Release of nitrous oxide (N2O) from denitrifying activated sludge caused by H2S-containing wastewater: Quantification and application of a new mathematical model[J]. Water Science and Technology, 1998, 38(1): 237-246. doi: 10.2166/wst.1998.0057
|
[56] |
GU T F, TAN P Y, ZHOU Y C, et al. Characteristics and mechanism of dimethyl trisulfide formation during sulfide control in sewer by adding various oxidants[J]. Science of the Total Environment, 2019, 673: 719-725. doi: 10.1016/j.scitotenv.2019.04.131
|
[57] |
JIANG Y, CHENG B, LIU M X, et al. Spatial and temporal variations of taste and odor compounds in surface water, overlying water and sediment of the western Lake Chaohu, China[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 96(2): 186-191. doi: 10.1007/s00128-015-1698-y
|
[58] |
TAN W B, JIANG Z, CHEN C, et al. Thiopseudomonas denitrificans gen. nov., sp. nov., isolated from anaerobic activated sludge[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(1): 225-229.
|
[59] |
LIANG S, ZHANG L, JIANG F. Indirect sulfur reduction via polysulfide contributes to serious odor problem in a sewer receiving nitrate dosage[J]. Water Research, 2016, 100: 421-428. doi: 10.1016/j.watres.2016.05.036
|
[60] |
HE R, YAO X Z, CHEN M, et al. Conversion of sulfur compounds and microbial community in anaerobic treatment of fish and pork waste[J]. Waste Management, 2018, 76: 383-393. doi: 10.1016/j.wasman.2018.04.006
|
[61] |
ZHOU X Y, ZHANG K J, ZHANG T Q, et al. An ignored and potential source of taste and odor (T&O) issues-biofilms in drinking water distribution system(DWDS)[J]. Applied Microbiology and Biotechnology, 2017, 101(9): 3537-3550. doi: 10.1007/s00253-017-8223-7
|