[1] |
MANNING S R, NOBLES D R. Impact of global warming on water toxicity: Cyanotoxins[J]. Current Opinion in Food Science, 2017, 18: 14-20. doi: 10.1016/j.cofs.2017.09.013
|
[2] |
HARKE M J, STEFFEN M M, GOBLER C J, et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp[J]. Harmful Algae, 2016, 54: 4-20. doi: 10.1016/j.hal.2015.12.007
|
[3] |
HUISMAN J, CODD G A, PAERL H W, et al. Cyanobacterial blooms[J]. Nature Reviews Microbiology, 2018, 16: 471-483. doi: 10.1038/s41579-018-0040-1
|
[4] |
LIU Y H, CHEN W, LI D H, et al. Cyanobacteria-/cyanotoxin-contaminations and eutrophication status before Wuxi Drinking Water Crisis in Lake Taihu, China[J]. Journal of Environmental Sciences, 2011, 23(4): 575-581. doi: 10.1016/S1001-0742(10)60450-0
|
[5] |
TANG Y, ZHANG H, LIU X N, et al. Flocculation of harmful algal blooms by modified attapulgite and its safety evaluation[J]. Water Research, 2011, 45(9): 2855-2862. doi: 10.1016/j.watres.2011.03.003
|
[6] |
LOUZAO M C, ABAL P, FERNÁNDEZ D A, et al. Study of adsorption and flocculation properties of natural clays to remove Prorocentrum lima[J]. Toxins, 2015, 7: 3977-3988. doi: 10.3390/toxins7103977
|
[7] |
LIU Y, CAO X H, YU Z M, et al. Flocculation of harmful algal cells using modified clay: Effects of the properties of the clay suspension[J]. Journal of Applied Phycology, 2016, 28(3): 1623-1633. doi: 10.1007/s10811-015-0735-x
|
[8] |
潘纲, 张明明, 闫海, 等. 黏土絮凝沉降铜绿微囊藻的动力学及其作用机理[J]. 环境科学, 2003, 24(5): 1-10. doi: 10.3321/j.issn:0250-3301.2003.05.001
|
[9] |
邹华, 潘纲, 陈灏. 壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除[J]. 环境科学, 2004, 25(6): 40-43. doi: 10.3321/j.issn:0250-3301.2004.06.008
|
[10] |
YU Z M, SONG X X, CAO X H, et al. Mitigation of harmful algal blooms using modified clays: Theory, mechanisms, and applications[J]. Harmful Algae, 2017, 69: 48-64. doi: 10.1016/j.hal.2017.09.004
|
[11] |
WU T, YAN X Y, XIANG C, et al. Removal of Chattonella marina with clay minerals modified with a gemini surfactant[J]. Applied Clay Science, 2010, 50(4): 604-607. doi: 10.1016/j.clay.2010.10.005
|
[12] |
GHOSAL P S, KATTIL K V, YADAV M K, et al. Adsorptive removal of arsenic by novel iron/olivine composite: Insights into preparation and adsorption process by response surface methodology and artificial neural network[J]. Journal of Environmental Management, 2018, 209: 176-187.
|
[13] |
SHABAN M, ABUKHADRA M R, KHAN A A P, et al. Removal of congo red, methylene blue and Cr(VI) ions from water using natural serpentine[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82: 102-116. doi: 10.1016/j.jtice.2017.10.023
|
[14] |
BAHABADI F N, FARPOOR M H, MEHRIZI M H. Removal of Cd, Cu and Zn ions from aqueous solutions using natural and Fe modified sepiolite, zeolite and palygorskite clay minerals[J]. Water Science & Technology, 2017, 75: 340-349.
|
[15] |
BANDURA L, WOSZUK A, KOLODYÑSKA D, et al. Application of mineral sorbents for petroleum substances removal: A review[J]. Minerals, 2017, 7(3): 37-62. doi: 10.3390/min7030037
|
[16] |
XIAO X Z, LIU S Y, ZHANG X Y, et al. Phosphorus removal and recovery from secondary effluent in sewage treatment plant by magnetite mineral microparticles[J]. Powder Technology, 2017, 306: 68-73. doi: 10.1016/j.powtec.2016.10.066
|
[17] |
WANG B, WU D, CHU K H, et al. Removal of harmful alga, Chattonella marina, by recyclable natural magnetic sphalerite[J]. Journal of Hazardous Materials, 2017, 234: 498-506.
|
[18] |
SUKENIK A, VINER-MOZZINI Y, TAVASSI M, et al. Removal of cyanobacteria and cyanotoxins from lake water by composites of bentonite with micelles of the cation octadecyltrimethyl ammonium (ODTMA)[J]. Water Research, 2017, 120: 165-173. doi: 10.1016/j.watres.2017.04.075
|
[19] |
GARRIDO-RAMÍREZE G, THENG B K G, MORA M L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions: A review[J]. Applied Clay Science, 2010, 47(3/4): 182-192.
|
[20] |
THOMAS D N, JUDD S J, FAWCETT N. Flocculation modelling: A review[J]. Water Research, 1999, 3(7): 1579-1592.
|
[21] |
秦芳, 蒋钦凤, 艾玉明, 等. Mg/Al水滑石对铜绿微囊藻的去除性能[J]. 科技导报, 2014, 32(25): 36-39. doi: 10.3981/j.issn.1000-7857.2014.25.005
|
[22] |
HU X B, ZHANG R F, YE J Y, et al. Monitoring and research of microcystins and environmental factors in a typical artificial freshwater aquaculture pond[J]. Environmental Science and Pollution Research, 2018, 25: 5921-5933. doi: 10.1007/s11356-017-0956-4
|
[23] |
TSAI K P. Effects of two copper compounds on Microcystis aeruginosa cell density, membrane integrity, and microcystinrelease[J]. Ecotoxicology & Environmental Safety, 2015, 120: 428-435.
|
[24] |
SIMIONATO D, BASSO S, GIACOMETTI G M, et al. Optimization of light use efficiency for biofuel production in algae[J]. Biophysical Chemistry, 2013, 182: 71-78. doi: 10.1016/j.bpc.2013.06.017
|
[25] |
KNAPPE R, DETLEF R U, BELK C, et al. Algae detection and removal strategies for drinking water treatment plants[J]. American Water Works Association, 2004(12): 65-78.
|
[26] |
SHEN Q H, ZHU J W, CHENG L H, et al. Enhanced algae removal by drinking water treatment of chlorination coupled with coagulation[J]. Desalination, 2011, 271(1/2/3): 236-240.
|
[27] |
HAMMES F, MEYLAN S, SALHI E, et al. Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton[J]. Water Research, 2007, 41(7): 1447-1454. doi: 10.1016/j.watres.2007.01.001
|
[28] |
DEMIRBAS A. Heavy metal adsorption onto agro-based waste materials: A review[J]. Journal of Hazardous Materials, 2008, 157(2/3): 220-229.
|
[29] |
ÇORUH S. The removal of zinc ions by natural and conditioned clinoptilolites[J]. Desalination, 2008, 225(1/2/3): 41-57.
|
[30] |
OZDES D, GUNDOGDU A, KEMER B, et al. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: Equilibrium, kinetic and thermodynamic study[J]. Journal of Hazardous Materials, 2009, 166(2/3): 1480-1487.
|
[31] |
CHEN J J, YEH H H. The mechanisms of potassium permanganate on algae removal[J]. Water Research, 2005, 39(18): 4420-4428. doi: 10.1016/j.watres.2005.08.032
|
[32] |
ARAVANTINOU A F, TSARPALI V, DAILIANIS S, et al. Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae[J]. Ecotoxicol and Environmental Satety, 2015, 144: 109-116.
|
[33] |
ARUOJA V, DUBOURGUIER H C, KASEMETS K, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J]. Science of the Total Environment, 2009, 407(4): 1461-1468. doi: 10.1016/j.scitotenv.2008.10.053
|
[34] |
CHEN P Y, POWELL B A, MORTIMER M, et al. Adaptive interactions between zinc oxide nanoparticles and Chlorella sp[J]. Environmental Science & Technology, 2012, 46(21): 12178-12185.
|
[35] |
CHENY G, SU Y L, ZHENG X, et al. Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure[J]. Water Research, 2012, 46(14): 4379-4386. doi: 10.1016/j.watres.2012.05.042
|
[36] |
ZHAO J, CAO X S, WANG Z Y, et al. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae[J]. Water Research, 2017, 111: 18-27. doi: 10.1016/j.watres.2016.12.037
|
[37] |
AKTAS T S, TAKEDA F, MARUO C, et al. A comparison of zeta potentials and coagulation behaviors of cyanobacteria and algae[J]. Desalination & Water Treatment, 2012, 48(1/2/3): 294-301.
|
[38] |
ROH S H, KWAK D H, JUNG H J, et al. Simultaneous removal of algae and their secondary algal metabolites from water by hybrid system of DAF and PAC adsorption[J]. Separation Science & Technology, 2008, 43(1): 113-131.
|
[39] |
CARPENTER S R. Phosphorus control is critical to mitigating eutrophication[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 11039-11040. doi: 10.1073/pnas.0806112105
|
[40] |
MEHNER T, DIEKMANN M, GONSIORCZYK T, et al. Rapid recovery from eutrophication of a stratified lake by disruption of internal nutrient load[J]. Ecosystems, 2008, 11(7): 1142-1156. doi: 10.1007/s10021-008-9185-5
|
[41] |
CHEN J, YAN L G, YU H Q, et al. Efficient removal of phosphate by facile prepared magnetic diatomite and illite clay from aqueous solution[J]. Chemical Engineering Journal, 2016, 287: 162-172. doi: 10.1016/j.cej.2015.11.028
|
[42] |
YOON S Y, LEE G G, PARK J A, et al. Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles[J]. Chemical Engineering Journal, 2014, 236: 341-347. doi: 10.1016/j.cej.2013.09.053
|
[43] |
ZELMANOV G, SEMIAT R. Iron (Fe) oxide/hydroxide nanoparticles-based agglomerates suspension as adsorbent for chromium (Cr) removal from water and recovery[J]. Separation & Purification Technology, 2011, 80(2): 330-337.
|
[44] |
WANG H, ZHU J, FU Q L, et al. Adsorption of phosphate onto ferrihydrite and ferrihydrite-humic acid complexes[J]. Pedosphere, 2015, 25(3): 405-414. doi: 10.1016/S1002-0160(15)30008-4
|