-
近年来,由于水环境中营养盐过量及气候变暖,导致湖泊和水库甚至河流有害藻华频繁暴发,对水生生态系统、渔业和人类健康造成了严重威胁[1],因而藻类污染治理已成为当今国内外面临的一大难题[2-3]。尽管控制污染源可以从根本上解决藻类污染,但时间长,见效慢。而在当前,我国江河湖库大多趋于富营养状态,难以避免藻类灾害的突发,而有些藻类灾害突发会造成重大损失[4]。因此,开展各种综合除藻方法和应急除藻技术研究显得尤为重要。
目前,研究者们已开发了多种应急除藻方法。其中,天然无毒的黏土矿物材料絮凝去除水体中藻类是治理藻华的有效方法[5-8]。这种方法因其成本低、吸附容量高、阳离子交换容量高和比表面积大,尤其是当藻华的规模大到一定程度时,黏土除藻优势更加明显。然而,将黏土用于藻类去除上仍存在一些问题[9-10],如沉降至水底的大量黏土及有害藻类的聚集体可能会影响水生生物的呼吸和摄食。虽然改性黏土可以减小黏土的使用量并提高除藻效率,但黏土改性过程中需要复杂的预处理过程和高成本,同时改性黏土中的掺杂物对底栖生物的影响难以评价[9-11]。因此,开发一种经济、高效、安全的水华控制技术尤为迫切。
近年来,一些矿物因其有良好的吸附能力而被应用于水污染治理中。GHOSAL等[12]采用响应面法和人工神经网络法研究了铁/橄榄石对砷的吸附去除过程;SHABAN等[13]研究了天然蛇纹石对常见的水体污染物染料和重金属离子的吸附性能;BAHABADI等[14]通过修饰海泡石、沸石、坡缕石去除水环境中的重金属Cd、Cu、Zn;BANDURA等[15]归纳了天然矿物在水体中吸附石油的研究进展;XIAO等[16]将磁铁矿用于污水处理厂吸附水中的磷。另外,有学者发现天然矿物可以有效去除水中藻。WANG等[17]考察了不同理化条件下天然磁闪锌矿去除有害藻类海洋卡盾藻;SUKENIK等[18]采用阳离子表面活性剂改性的膨润土用于湖泊水体中蓝藻和蓝藻毒素的去除等。不同种类的矿物由于其表面结构和理化性质差异,其对藻类的去除效果及去除速率差异较大,而且一些天然矿物表面带正电荷,利用其吸附去除表面带负电荷的藻细胞具有独特优势。因此,开展天然矿物除藻研究具有重要的现实意义。
本研究以铜绿微囊藻为去除目标,测定了10种天然矿物对铜绿微囊藻叶绿素a的去除情况,探讨了矿物成分与去除铜绿微囊藻效果的相关性并发现天然橄榄石具有优良的除藻性能,系统地研究了反应条件如矿物用量、藻密度、光强、水温及介质pH对其除藻效率的影响,同时从反应前后细胞形态、Zeta电位及营养盐的变化等方面探讨和揭示天然橄榄石对铜绿微囊藻的去除机理,为去除铜绿微囊藻的矿物选择以及改性提供参考。
天然橄榄石对水体铜绿微囊藻的去除效果
Removal efficiency of Microcystis aeruginosa from water by natural olivine
-
摘要: 为开发安全、高效、廉价的水华控制技术,选择铝土矿、磷铁矿、黄铁矿、铬铁矿及橄榄石等10种天然矿物材料,以水体铜绿微囊藻为研究对象,通过跟踪测定其叶绿素a的变化,研究了天然矿物对水体铜绿微囊藻去除特性,并探讨了天然橄榄石去除铜绿微囊藻的影响因素及去除机理。结果表明:相同条件下天然橄榄石具有最高的除藻能力;矿物用量及藻密度对橄榄石除藻过程影响最大,其次为pH及水温,光强影响最小;当橄榄石浓度为1.5 g·L‒1,藻密度<1.7×106 cells·mL‒1、水温15 ℃、反应介质为弱酸性或中性(pH 5~7)时,吸附1 h后,叶绿素a去除率高于96%。进一步分析可知,天然橄榄石主要通过静电作用对铜绿微囊藻进行吸附,进而使藻细胞絮凝沉降,部分藻细胞破裂分解,同时天然橄榄石在反应过程中吸附培养基中的营养盐,造成藻细胞营养缺少,从而对藻细胞的生长造成一定的抑制作用。Abstract: In order to develop a safe, efficient and inexpensive water bloom control technology, ten kinds of natural minerals such as bauxite, phosphorite, pyrite, chromite and olivine etc. were evaluated by their Microcystis aeruginosa removal charactrsitics in terms of the variations of chlorophyll a content. Moreover, the influence factors and mechanisms of Microcystis aeruginosa removal by olivine were studied. The results showed that natural olivine had the best performance under the same conditions among the tested natural minerals. The olivine dosage and algae density presented the greatest effects on algae removal, followed by pH and water temperature, while light intensity showed the least effect. More than 96% of chlorophyll a was removed after 1 hour adsorption by olivine at olivine dosage of 1.5 g·L‒1, algae density less than 7×106 cells·mL‒1, water temperature of 15 ℃, and weak acidic or neutral (pH 5~7) reaction medium. Further analysis indicated that electrostatic interaction palyed a main role on Microcystis aeruginosa adsorption by natural olivine, then the coagulation and sedimentation of algae cells occurred, and some algae cells broke down. At the same time, olivine could absorb the nutrients in the medium during the reaction process, and reduced the nutrients for algae cells, thus inhibited algae cells growth to some extent.
-
Key words:
- Microcystis aeruginosa /
- natural olivine /
- removal efficiency /
- physicochemical factors
-
表 1 铜绿微囊藻叶绿素a去除率与矿物不同组分含量的相关性分析
Table 1. Correlation analysis between removal rate of chlorophyll a in Microcystis aeruginosa with different mineral components
矿物组分 矿物类型 组分含量/% 叶绿素a的去除率/% Pearson相关系数 相伴概率(双侧) SiO2 重晶石 0.3 18.9 0.962** 0.009 白云石 1.61 35.2 石灰石 1.57 44.6 黄铁矿 20.57 66.9 橄榄石 39.06 98.3 Fe2O3 重晶石 0.02 18.9 0.975* 0.025 白云石 0.55 35.2 石灰石 0.43 44.6 橄榄石 4.13 98.3 MgO 白云石 17.82 35.2 0.664 0.336 石灰石 0.62 44.6 黄铁矿 5.67 66.9 橄榄石 35.4 98.3 Al2O3 重晶石 0.02 18.9 0.983* 0.017 白云石 0.12 35.2 石灰石 0.68 44.6 橄榄石 3.44 98.3 注:*在0.05水平下(双尾)显著相关;**在0.01水平下(双尾)显著相关。 -
[1] MANNING S R, NOBLES D R. Impact of global warming on water toxicity: Cyanotoxins[J]. Current Opinion in Food Science, 2017, 18: 14-20. doi: 10.1016/j.cofs.2017.09.013 [2] HARKE M J, STEFFEN M M, GOBLER C J, et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp[J]. Harmful Algae, 2016, 54: 4-20. doi: 10.1016/j.hal.2015.12.007 [3] HUISMAN J, CODD G A, PAERL H W, et al. Cyanobacterial blooms[J]. Nature Reviews Microbiology, 2018, 16: 471-483. doi: 10.1038/s41579-018-0040-1 [4] LIU Y H, CHEN W, LI D H, et al. Cyanobacteria-/cyanotoxin-contaminations and eutrophication status before Wuxi Drinking Water Crisis in Lake Taihu, China[J]. Journal of Environmental Sciences, 2011, 23(4): 575-581. doi: 10.1016/S1001-0742(10)60450-0 [5] TANG Y, ZHANG H, LIU X N, et al. Flocculation of harmful algal blooms by modified attapulgite and its safety evaluation[J]. Water Research, 2011, 45(9): 2855-2862. doi: 10.1016/j.watres.2011.03.003 [6] LOUZAO M C, ABAL P, FERNÁNDEZ D A, et al. Study of adsorption and flocculation properties of natural clays to remove Prorocentrum lima[J]. Toxins, 2015, 7: 3977-3988. doi: 10.3390/toxins7103977 [7] LIU Y, CAO X H, YU Z M, et al. Flocculation of harmful algal cells using modified clay: Effects of the properties of the clay suspension[J]. Journal of Applied Phycology, 2016, 28(3): 1623-1633. doi: 10.1007/s10811-015-0735-x [8] 潘纲, 张明明, 闫海, 等. 黏土絮凝沉降铜绿微囊藻的动力学及其作用机理[J]. 环境科学, 2003, 24(5): 1-10. doi: 10.3321/j.issn:0250-3301.2003.05.001 [9] 邹华, 潘纲, 陈灏. 壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除[J]. 环境科学, 2004, 25(6): 40-43. doi: 10.3321/j.issn:0250-3301.2004.06.008 [10] YU Z M, SONG X X, CAO X H, et al. Mitigation of harmful algal blooms using modified clays: Theory, mechanisms, and applications[J]. Harmful Algae, 2017, 69: 48-64. doi: 10.1016/j.hal.2017.09.004 [11] WU T, YAN X Y, XIANG C, et al. Removal of Chattonella marina with clay minerals modified with a gemini surfactant[J]. Applied Clay Science, 2010, 50(4): 604-607. doi: 10.1016/j.clay.2010.10.005 [12] GHOSAL P S, KATTIL K V, YADAV M K, et al. Adsorptive removal of arsenic by novel iron/olivine composite: Insights into preparation and adsorption process by response surface methodology and artificial neural network[J]. Journal of Environmental Management, 2018, 209: 176-187. [13] SHABAN M, ABUKHADRA M R, KHAN A A P, et al. Removal of congo red, methylene blue and Cr(VI) ions from water using natural serpentine[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82: 102-116. doi: 10.1016/j.jtice.2017.10.023 [14] BAHABADI F N, FARPOOR M H, MEHRIZI M H. Removal of Cd, Cu and Zn ions from aqueous solutions using natural and Fe modified sepiolite, zeolite and palygorskite clay minerals[J]. Water Science & Technology, 2017, 75: 340-349. [15] BANDURA L, WOSZUK A, KOLODYÑSKA D, et al. Application of mineral sorbents for petroleum substances removal: A review[J]. Minerals, 2017, 7(3): 37-62. doi: 10.3390/min7030037 [16] XIAO X Z, LIU S Y, ZHANG X Y, et al. Phosphorus removal and recovery from secondary effluent in sewage treatment plant by magnetite mineral microparticles[J]. Powder Technology, 2017, 306: 68-73. doi: 10.1016/j.powtec.2016.10.066 [17] WANG B, WU D, CHU K H, et al. Removal of harmful alga, Chattonella marina, by recyclable natural magnetic sphalerite[J]. Journal of Hazardous Materials, 2017, 234: 498-506. [18] SUKENIK A, VINER-MOZZINI Y, TAVASSI M, et al. Removal of cyanobacteria and cyanotoxins from lake water by composites of bentonite with micelles of the cation octadecyltrimethyl ammonium (ODTMA)[J]. Water Research, 2017, 120: 165-173. doi: 10.1016/j.watres.2017.04.075 [19] GARRIDO-RAMÍREZE G, THENG B K G, MORA M L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions: A review[J]. Applied Clay Science, 2010, 47(3/4): 182-192. [20] THOMAS D N, JUDD S J, FAWCETT N. Flocculation modelling: A review[J]. Water Research, 1999, 3(7): 1579-1592. [21] 秦芳, 蒋钦凤, 艾玉明, 等. Mg/Al水滑石对铜绿微囊藻的去除性能[J]. 科技导报, 2014, 32(25): 36-39. doi: 10.3981/j.issn.1000-7857.2014.25.005 [22] HU X B, ZHANG R F, YE J Y, et al. Monitoring and research of microcystins and environmental factors in a typical artificial freshwater aquaculture pond[J]. Environmental Science and Pollution Research, 2018, 25: 5921-5933. doi: 10.1007/s11356-017-0956-4 [23] TSAI K P. Effects of two copper compounds on Microcystis aeruginosa cell density, membrane integrity, and microcystinrelease[J]. Ecotoxicology & Environmental Safety, 2015, 120: 428-435. [24] SIMIONATO D, BASSO S, GIACOMETTI G M, et al. Optimization of light use efficiency for biofuel production in algae[J]. Biophysical Chemistry, 2013, 182: 71-78. doi: 10.1016/j.bpc.2013.06.017 [25] KNAPPE R, DETLEF R U, BELK C, et al. Algae detection and removal strategies for drinking water treatment plants[J]. American Water Works Association, 2004(12): 65-78. [26] SHEN Q H, ZHU J W, CHENG L H, et al. Enhanced algae removal by drinking water treatment of chlorination coupled with coagulation[J]. Desalination, 2011, 271(1/2/3): 236-240. [27] HAMMES F, MEYLAN S, SALHI E, et al. Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton[J]. Water Research, 2007, 41(7): 1447-1454. doi: 10.1016/j.watres.2007.01.001 [28] DEMIRBAS A. Heavy metal adsorption onto agro-based waste materials: A review[J]. Journal of Hazardous Materials, 2008, 157(2/3): 220-229. [29] ÇORUH S. The removal of zinc ions by natural and conditioned clinoptilolites[J]. Desalination, 2008, 225(1/2/3): 41-57. [30] OZDES D, GUNDOGDU A, KEMER B, et al. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: Equilibrium, kinetic and thermodynamic study[J]. Journal of Hazardous Materials, 2009, 166(2/3): 1480-1487. [31] CHEN J J, YEH H H. The mechanisms of potassium permanganate on algae removal[J]. Water Research, 2005, 39(18): 4420-4428. doi: 10.1016/j.watres.2005.08.032 [32] ARAVANTINOU A F, TSARPALI V, DAILIANIS S, et al. Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae[J]. Ecotoxicol and Environmental Satety, 2015, 144: 109-116. [33] ARUOJA V, DUBOURGUIER H C, KASEMETS K, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J]. Science of the Total Environment, 2009, 407(4): 1461-1468. doi: 10.1016/j.scitotenv.2008.10.053 [34] CHEN P Y, POWELL B A, MORTIMER M, et al. Adaptive interactions between zinc oxide nanoparticles and Chlorella sp[J]. Environmental Science & Technology, 2012, 46(21): 12178-12185. [35] CHENY G, SU Y L, ZHENG X, et al. Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure[J]. Water Research, 2012, 46(14): 4379-4386. doi: 10.1016/j.watres.2012.05.042 [36] ZHAO J, CAO X S, WANG Z Y, et al. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae[J]. Water Research, 2017, 111: 18-27. doi: 10.1016/j.watres.2016.12.037 [37] AKTAS T S, TAKEDA F, MARUO C, et al. A comparison of zeta potentials and coagulation behaviors of cyanobacteria and algae[J]. Desalination & Water Treatment, 2012, 48(1/2/3): 294-301. [38] ROH S H, KWAK D H, JUNG H J, et al. Simultaneous removal of algae and their secondary algal metabolites from water by hybrid system of DAF and PAC adsorption[J]. Separation Science & Technology, 2008, 43(1): 113-131. [39] CARPENTER S R. Phosphorus control is critical to mitigating eutrophication[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 11039-11040. doi: 10.1073/pnas.0806112105 [40] MEHNER T, DIEKMANN M, GONSIORCZYK T, et al. Rapid recovery from eutrophication of a stratified lake by disruption of internal nutrient load[J]. Ecosystems, 2008, 11(7): 1142-1156. doi: 10.1007/s10021-008-9185-5 [41] CHEN J, YAN L G, YU H Q, et al. Efficient removal of phosphate by facile prepared magnetic diatomite and illite clay from aqueous solution[J]. Chemical Engineering Journal, 2016, 287: 162-172. doi: 10.1016/j.cej.2015.11.028 [42] YOON S Y, LEE G G, PARK J A, et al. Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles[J]. Chemical Engineering Journal, 2014, 236: 341-347. doi: 10.1016/j.cej.2013.09.053 [43] ZELMANOV G, SEMIAT R. Iron (Fe) oxide/hydroxide nanoparticles-based agglomerates suspension as adsorbent for chromium (Cr) removal from water and recovery[J]. Separation & Purification Technology, 2011, 80(2): 330-337. [44] WANG H, ZHU J, FU Q L, et al. Adsorption of phosphate onto ferrihydrite and ferrihydrite-humic acid complexes[J]. Pedosphere, 2015, 25(3): 405-414. doi: 10.1016/S1002-0160(15)30008-4