[1] |
SILVA R A, ROGERS K, BUCKLEY T J. Advancing environmental epidemiology to assess the beneficial influence of the natural environment on human health and well-being[J]. Environmental Science & Technology, 2018, 52(17): 9545-9555.
|
[2] |
徐海军, 何新秀, 曾英. 富氧尾气中NOx催化净化的研究进展[J]. 环境工程学报, 2002, 3(4): 29-33. doi: 10.3969/j.issn.1673-9108.2002.04.007
|
[3] |
RODGERS C T. Magnetic field effects in chemical systems[J]. Pure and Applied Chemistry, 2009, 81(1): 19-43. doi: 10.1351/PAC-CON-08-10-18
|
[4] |
HENBEST K B, KUKURA P, RODERS C T, et al. Radio frequency magnetic field effects on a radical recombination reaction: A diagnostic test for the radical pair mechanism[J]. Journal of the American Chemical Society, 2004, 126(26): 8102-8103. doi: 10.1021/ja048220q
|
[5] |
MIURA T, MAEDA K, ARAI T. The spin mixing process of a radical pair in low magnetic field observed by transient absorption detected nanosecond pulsed magnetic field effect[J]. Journal of Physical Chemistry A, 2006, 110(12): 4151-4156. doi: 10.1021/jp056488d
|
[6] |
李志华, 钟云波, 任忠鸣, 等. 各向异性纳米铁氧体磁性材料的制备[J]. 上海金属, 2006, 28(1): 53-626. doi: 10.3969/j.issn.1001-7208.2006.01.011
|
[7] |
WANG L B, ZHONG C W, WAKAYAMA N I. Damping of natural convection in the aqueous protein solutions by the application of high magnetic fields[J]. Journal of Crystal Growth, 2002, 237: 312-316.
|
[8] |
CATALLO N, COLACICCHI S, CARNICELLI V, et al. Static magnetic field effect on the fremy's salt-ascorbic acid chemical reaction studied by continuous-wave electron paramagnetic resonance[J]. Journal of Physical Chemistry A, 2010, 114(2): 778-783. doi: 10.1021/jp906376h
|
[9] |
YAMAGUCHI M, TANIMOTO Y. Magneto-Science: Magnetic Field Effects on Materials: Fundamentals and Applications[M]. Berlin: Springer Berlin Heidelberg, 2007.
|
[10] |
汪涛, 张典典, 王志强, 等. 磁场强化技术在污水处理中的研究进展[J]. 现代化工, 2017, 37(7): 29-33.
|
[11] |
赵跃民, 李功民, 骆振福, 等. 模块式干法重介质流化床选煤理论与工业应用[J]. 煤炭学报, 2014, 39(8): 1566-1571.
|
[12] |
张磊, 姚广春, 焦万丽. 磁场力对磁性杂质颗粒的作用的研究[J]. 材料导报, 2004, 8(10): 89-90. doi: 10.3321/j.issn:1005-023X.2004.10.026
|
[13] |
PRAKASH K, RATIMP B. Analytical expressions of the collision frequency function for aggregation of magnetic particles[J]. Aerosol Science, 2005, 36(4): 455-469. doi: 10.1016/j.jaerosci.2004.10.008
|
[14] |
ANTONIO R, GUERREIR O, VADIM K, et al. Influence of continuous magnetic field on the separation of ephedrine enantiomers by molecularly imprinted polymers[J]. Biosensors and Bioelectronics, 2008, 23(7): 1189-1194. doi: 10.1016/j.bios.2007.09.009
|
[15] |
MICHELLE S, MERUVI A, JOSE A, et al. Magneticfield release of trapped chatges in poly(fluorenylenevinylene)s[J]. Organic Electronics, 2007, 8(6): 695-701. doi: 10.1016/j.orgel.2007.05.007
|
[16] |
TATSUHIRO T, KAZUHITO S, HIROSHI A, et al. Alignment of vapor-grown carbon fibers in polymer under magnetic field[J]. Chemical Physics Letters, 2007, 436(4/5/6): 378-382.
|
[17] |
陈凡植, 颜幼平, 康新平. 高梯度磁分离技术在环境保护中的应用[J]. 化工环保, 2000, 20(5): 11-14. doi: 10.3969/j.issn.1006-1878.2000.05.003
|
[18] |
俞明, 孙国斌, 蔡锐彬. 燃油磁化对发动机排放与节能影响的试验研究[J]. 华南理工大学学报, 2001, 29(7): 44-47.
|
[19] |
朱传征, 戴立益, 杨宝林, 等. 常压下磁场对合成氨催化反应影响的研究[J]. 华东师范大学学报(自然科学版), 1998, 4(2): 51-54.
|
[20] |
KLIUEVA L M, ZAKHAREVICH N S. Process of gentamycin sorption in liquid and solid-phase countercurrent flow[J]. Antibiotics and Medical Biotechnology, 1985, 30(8): 576-579.
|
[21] |
WYLOCK C, CILINET P, HAUT B. Gas absorption into a spherical liquid droplet: numerical and heoretical study[J]. Chemical Engineering & Technology, 2012, 207: 851-864.
|
[22] |
ZHANG Q, GUI K T. Removal of SO2 using a magnetically fluidized bed in the semi-dry flue gas desulfurization process: Roles of ferromagnetic particles and magnetic field applied[J]. Chemical Engineering & Technology, 2008, 31(4): 537-541.
|
[23] |
WANG Y H, GUI K T. The determination of magnetically stabilized regions for the magnetically fluidized bed[J]. Apply Science, 2004, 19: 25-28.
|
[24] |
ZHANG Q, GUI K T, WANG X B. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed[J]. Heat Mass Transfer, 2016, 52(2): 331-336. doi: 10.1007/s00231-015-1555-x
|
[25] |
张琦, 归柯庭, 姚桂焕, 等. 外加磁场对磁流化床烟气脱硫过程的影响[J]. 动力工程, 2008, 28(6): 940-944.
|
[26] |
JAE D M, GEUN T L, SUK H C. SO2 and CO gas removal and discharge characteristics of a nonthermal plasma reactor in a crossed DC magnetic field[C]//Industry Applications Conference. Conference Record of the 1997 IEEE. Los Angeles, 1997: 1198-1204.
|
[27] |
SOPHIE R. High steady magnetic field processing of functional magnetic materials[J]. Journal of the Minerals, Metals & Materials Society, 2013, 65(7): 901-909.
|
[28] |
BUSCA G, LARRUBIA G A, ARRIGHI L, et al. Catalytic abatement of NOx: Chemical and mechanistic aspects[J]. Catalysis Today, 2005, 107-108: 139-148. doi: 10.1016/j.cattod.2005.07.077
|
[29] |
BUSCA G, LIETTI L, RAMIS G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Applied Catalysis B: Environmental, 1998, 18(1/2): 1-36.
|
[30] |
RAMIS G, YI L, BUSCA G, et al. Adsorption, activation, and oxidation of ammonia over SCR catalysts[J]. Journal of Catalysis, 1995, 157(2): 523-535. doi: 10.1006/jcat.1995.1316
|
[31] |
APOSTPOSCI N B, GEIGER K, HIZBULLAH, et al. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts[J]. Applied Catalysis B: Environmental, 2006, 62(1/2): 104-114.
|
[32] |
LARRUBIA M A, RAMIS G, BUSCA G. An FI-IR study of the adsorption and oxidation of N-containing compounds over Fe2O3-TiO2 SCR catalysts[J]. Applied Catalysis B: Environmental, 2001, 30(1/2): 101-110.
|
[33] |
YAMAZAKI K, TAKAHASHI N, SHINJOH H, et al. The performance of NOx storage-reduction catalyst containing Fe-compound after thermal aging[J]. Applied Catalysis B: Environmental, 2004, 53(1): 1-12. doi: 10.1016/j.apcatb.2004.04.010
|
[34] |
YAO G H, WANG F, WAGN X B, GUI K T. Magnetic field effects on selective catalytic reduction of NO by NH3 over Fe2O3 catalyst in a magnetically fluidized bed[J]. Energy, 2010, 35(50): 2295-2300.
|
[35] |
WANG X F, ZHOU M F, ANDREWS L. Reactions of iron atoms with nitric oxide and carbon monoxide in excess argon: infrared spectra and density functional calculations of iron carbonyl nitrosyl complexes[J]. Journal of Physical Chemistry, 2000, 104(45): 10104-10111. doi: 10.1021/jp0006025
|
[36] |
RETHWISCH D G, DUMESIC J A. Adsorptive and catalytic properties of supported metal oxides. 2. Infrared spectroscopy of nitric oxide adsorbed on supported iron oxides[J]. Journal of Physical Chemistry, 1986, 90(8): 1625-1630. doi: 10.1021/j100399a034
|
[37] |
GRZYBEK T. XPS study of the interaction of ammonia and nitric oxide and active-carbon-supported iron oxides[J]. Fuel, 1993, 72(5): 619-622. doi: 10.1016/0016-2361(93)90573-K
|
[38] |
张雯, 王绪绪, 林华香, 等. 磁场对光催化反应羟基自由基生成速率的影响[J]. 化学学报, 2005, 63(18): 1765-1768. doi: 10.3321/j.issn:0567-7351.2005.18.024
|
[39] |
王国全. 磁化学及其应用[J]. 化工进展, 1998, 1(1): 30-32.
|
[40] |
HRISTOV J, FACHIKOV L. An overview of separation by magnetically stabilized beds: State-of-the-art and potential applications[J]. China Particuology, 2007, 5(1): 11-18.
|
[41] |
DELBECQ F, SAUTET P. Interplay between magnetism and chemisorption: A theoretical study of CO and NO adsorption on a Pd3Mn alloy surface[J]. Chemical Physic Letters, 1999, 302(1): 91-97.
|
[42] |
SELWOOD P W. Magnetism and the structure of catalytically active solids[J]. Advances in Catalysis, 1951, 3: 27-106.
|
[43] |
OZEKI S, UCHIYAMA H. Magneto adsorption of nitric oxide on iron oxides[J]. Journal of Physic Chemistry, 1988, 92(4): 6485-6487.
|
[44] |
ZHANG Y, GAO J M, FENG D D, et al. Effect of magnetic field on the ammonia-based CO2 absorption process[J]. Canadian Journal of Chemical Engineering, 2018, 96(7): 1462-1467. doi: 10.1002/cjce.23138
|
[45] |
KRICELLE M D, LUCIELEN O S, ALBERTO V C. Use of static magnetic fields to increase CO2 biofixation by the microalga chlorella fusca[J]. Bioresource Technology, 2019, 276: 103-109. doi: 10.1016/j.biortech.2018.12.080
|
[46] |
FILIP M G, RINKLEBE J, YONG S, et al. International conference on heavy metals in the environment[J]. Chemosphere, 2017, 2(3): 94-95.
|
[47] |
LI J F, YAN N Q, QU Z, et al. Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al2O3 at lower temperatures[J]. Environment Science & Technology, 2010, 44(1): 426-431.
|
[48] |
WANG T, LI C T, ZHAO L K, et al. The catalytic performance and characterization of ZrO2 support modification on CuO-CeO2/TiO2 catalyst for the simultaneous removal of Hg0 and NO[J]. Applied Surface Science, 2016, 400: 227-237.
|
[49] |
LI H L, WU S K, WU C Y, et al. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst[J]. Environment Science & Technology, 2015, 49(12): 7373-7379.
|
[50] |
GRANITE E J, FREEMAN M C, HARGIS R A, et al. The thief process for mercury removal from flue gas[J]. Journal of Environment Management, 2007, 84(4): 628-634.
|
[51] |
WU S K, LI H L, LI L Q, et al. Effects of flue-gas parameters on low temperature NO reduction over a Cu-promoted CeO2-TiO2 catalyst[J]. Fuel, 2015, 159: 876-882. doi: 10.1016/j.fuel.2015.07.031
|
[52] |
YAN N Q, CHEN W M, CHEN J, et al. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas[J]. Environment Science & Technology, 2011, 45(13): 5725-5730.
|
[53] |
YANG S J, GUO Y F, YAN N Q, et al. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/gamma-Fe2O3 at lower temperatures[J]. Journal of Hazardous Materials, 2011, 186(1): 508-515. doi: 10.1016/j.jhazmat.2010.11.034
|
[54] |
YUAN Y, ZHAO Y C, LI H L, et al. Electrospun metal oxide-TiO2 nanofibers for elemental mercury removal from flue gas[J]. Journal of Hazardous Materials, 2012, 227: 427-435.
|
[55] |
DOWD W J, PENNLINE H W, FREEMAN M C, et al. A technique to control mercury from flue gas: the thief process[J]. Fuel, 2006, 87(12): 1071-1084.
|
[56] |
LEE S H, RHIM Y J, CHO S P, et al. Carbon-based novel sorbent for removing gas-phase mercury[J]. Fuel, 2006, 85(2): 219-226. doi: 10.1016/j.fuel.2005.02.030
|
[57] |
王君, 范美青, 杨飘萍, 等. 磁性固体超强酸 ${\rm{SO}}_4^{2 - }$ /ZrO2-Al2O3-Fe3O4的制备与性能研究[J]. 无机化学学报, 2007, 23(7): 1137-1142. doi: 10.3321/j.issn:1001-4861.2007.07.002
|
[58] |
DONG J, ZHENG H X, STEVEN M, et al. Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents[J]. Environment Science & Technology, 2009, 43(9): 3266-327.
|
[59] |
YANG J P, ZHAO Y C, ZHANG J Y, et al. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas[J]. Environment Science & Technology, 2014, 48(24): 14837-14843.
|
[60] |
YANG J P, ZHAO Y C, ZHANG J Y, et al. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 1. Catalyst characterization and performance evaluation[J]. Fuel, 2016, 164: 419-428. doi: 10.1016/j.fuel.2015.08.012
|
[61] |
YANG J P, ZHAO Y C, MA S M, et al. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust[J]. Environment Science & Technology, 2016, 50(21): 12040-12047.
|