[1] |
GE L K, NA G S, ZHANG S Y, et al. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes[J]. Science of the Total Environment, 2015, 527-528: 12-17. doi: 10.1016/j.scitotenv.2015.04.099
|
[2] |
DORER C, VOGT C, NEU T R, et al. Characterization of toluene and ethylbenzene biodegradation under nitrate-, iron(III)- and manganese(IV)-reducing conditions by compound-specific isotope analysis[J]. Environmental Pollution, 2016, 211: 271-281. doi: 10.1016/j.envpol.2015.12.029
|
[3] |
LIU X, STEELE J C, MENG X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review[J]. Environmental Pollution, 2017, 223: 161-169. doi: 10.1016/j.envpol.2017.01.003
|
[4] |
LIU J, TAN L M, WANG J, et al. Complete biodegradation of chlorpyrifos by engineered Pseudomonas putida cells expressing surface-immobilized laccases[J]. Chemosphere, 2016, 157: 200-207. doi: 10.1016/j.chemosphere.2016.05.031
|
[5] |
张昱, 唐妹, 田哲, 等. 制药废水中抗生素的去除技术研究进展[J]. 环境工程学报, 2018, 12(1): 1-14. doi: 10.12030/j.cjee.201801010
|
[6] |
LIANG Z J, ZHAO Z W, SUN T Y, et al. Adsorption of quinolone antibiotics in spherical mesoporous silica: Effects of the retained template and its alkyl chain length[J]. Journal of Hazardous Materials, 2016, 305: 8-14. doi: 10.1016/j.jhazmat.2015.11.033
|
[7] |
LIU Y Y, JIN W, ZHAO Y P, et al. Enhanced catalytic degradation of methylene blue by alpha-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions[J]. Applied Catalysis B: Environmental, 2017, 206: 642-652. doi: 10.1016/j.apcatb.2017.01.075
|
[8] |
VÄLITALO P, KRUGLOVA A, MIKOLA A, et al. Toxicological impacts of antibiotics on aquatic micro-organisms: A mini-review[J]. International Journal of Hygiene and Environmental Health, 2017, 220(3): 558-569. doi: 10.1016/j.ijheh.2017.02.003
|
[9] |
WANG N N, ZHENG T, ZHANG G S, et al. A review on Fenton-like processes for organic wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 762-787. doi: 10.1016/j.jece.2015.12.016
|
[10] |
BABA Y, YATAGAI T, HARADA T, et al. Hydroxyl radical generation in the photo-Fenton process: Effects of carboxylic acids on iron redox cycling[J]. Chemical Engineering Journal, 2015, 277: 229-241. doi: 10.1016/j.cej.2015.04.103
|
[11] |
张娟娟, 张西慧. 非均相Fenton催化降解酚类化合物的研究进展[J]. 工业水处理, 2016, 36(1): 15-20. doi: 10.11894/1005-829x.2016.36(1).015
|
[12] |
STRLIČ M, KOLAR J, ŠELIH V S, et al. A comparative study of several transition metals in Fenton-like reaction systems at circum-neutral pH[J]. Acta Chimica Slovenica, 2003, 50(4): 619-632.
|
[13] |
杨浩, 郑华艳, 常瑜, 等. 以共沉淀法为基础的铜基催化剂制备新技术的研究进展[J]. 化工进展, 2014, 33(2): 379-386.
|
[14] |
刘小为, 陈忠林, 沈吉敏, 等. 硫酸钛光度法测定O3/H2O2体系中低浓度H2O2[J]. 中国给水排水, 2010, 26(16): 126-129.
|
[15] |
陈闪闪. 新型钴铜复合非均相类Fenton催化剂的制备及其性能研究[D]. 镇江: 江苏大学, 2016.
|
[16] |
CHEN Q R, HAN L, GAO C B, et al. Synthesis of monodispersed mesoporous silica spheres (MMSSs) with controlled particle size using gemini surfactant[J]. Microporous and Mesoporous Materials, 2010, 128(1/2/3): 203-212.
|
[17] |
何余生, 李忠, 奚红霞, 等. 气固吸附等温线的研究进展[J]. 离子交换与吸附, 2004, 20(4): 376-384. doi: 10.3321/j.issn:1001-5493.2004.04.012
|
[18] |
LÓPEZ-SUÁREZ F E, PARRES-ESCLAPEZ S, BUENO-LÓPEZ A, et al. Role of surface and lattice copper species in copper-containing (Mg/Sr) TiO3 perovskite catalysts for soot combustion[J]. Applied Catalysis B: Environmental, 2009, 93(1/2): 82-89.
|
[19] |
薛佼, 王润伟, 张宗弢, 等. 新型Zn2+掺杂C/Nb2O5纳米催化剂的制备及光催化性能[J]. 高等学校化学学报, 2018, 39(2): 319-326. doi: 10.7503/cjcu20170346
|
[20] |
田志茗, 王鑫月. La掺杂ZnO/SBA-15催化剂的制备及光催化降解孔雀石绿[J]. 化学通报, 2019, 82(4): 334-339.
|
[21] |
毕慧平, 刘立忠, 丁佳佳, 等. Cu-石墨烯类Fenton催化剂的制备及催化活性[J]. 无机化学学报, 2014, 30(10): 2347-2352.
|
[22] |
杨岳主, 李玉平, 杨道武, 等. 铁铜催化剂非均相Fenton降解苯酚及机制研究[J]. 环境科学, 2013, 34(7): 2658-2664.
|
[23] |
喻德忠, 赵慧, 刘东. 聚合氯化钛在环丙沙星废水混凝处理中的应用[J]. 工业水处理, 2018, 38(9): 76-78. doi: 10.11894/1005-829x.2018.38(9).076
|
[24] |
JIANG S S, ZHANG H P, YAN Y, et al. Preparation and characterization of porous Fe-Cu mixed oxides modified ZSM-5 coating/PSSF for continuous degradation of phenol wastewater[J]. Microporous and Mesoporous Materials, 2017, 240: 108-116. doi: 10.1016/j.micromeso.2016.11.020
|
[25] |
LIU Y M, LIU J T, LIU S Z, et al. Reaction mechanisms of methanol synthesis from CO/CO2 hydrogenation on Cu2O(111): Comparison with Cu(111)[J]. Journal of CO2 Utilization, 2017, 20: 59-65. doi: 10.1016/j.jcou.2017.05.005
|
[26] |
陈玉. 抗生素环丙沙星与Fe2+/Fe3+螯合行为对光-电芬顿降解效能与机理影响研究[D]. 北京: 北京交通大学, 2018.
|
[27] |
JI Y F, FERRONATO C, SALVADOR A, et al. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics[J]. Science of the Total Environment, 2014, 472: 800-808. doi: 10.1016/j.scitotenv.2013.11.008
|
[28] |
AN T C, YANG H, LI G Y, et al. Kinetics and mechanism of advanced oxidation processes(AOPs) in degradation of ciprofloxacin in water[J]. Applied Catalysis B: Environmental, 2010, 94(3/4): 288-294.
|
[29] |
JIANG C L, JI Y F, SHI Y Y, et al. Sulfate radical-based oxidation of fluoroquinolone antibiotics: Kinetics, mechanisms and effects of natural water matrices[J]. Water Research, 2016, 106: 507-517. doi: 10.1016/j.watres.2016.10.025
|
[30] |
ANTONIN V S, SANTOS M C, GARCIA-SEGURA S, et al. Electrochemical incineration of the antibiotic ciprofloxacin in sulfate medium and synthetic urine matrix[J]. Water Research, 2015, 83: 31-41. doi: 10.1016/j.watres.2015.05.066
|
[31] |
CHONG S, ZHANG G M, ZHANG N, et al. Diclofenac degradation in water by FeCeOx catalyzed H2O2: Influencing factors, mechanism and pathways[J]. Journal of Hazardous Materials, 2017, 334: 150-159. doi: 10.1016/j.jhazmat.2017.04.008
|