-
环丙沙星(ciprofloxacin,CIP)是一种典型的喹诺酮类抗生素,其具有喹诺酮和哌嗪环结构[1]。CIP在医学上有抗菌性强,能用来预防畜禽疾病和感染引起的人为性疾病[2],其广泛使用对微生物、植物、动物和人类健康构成潜在威胁,破坏原有环境的生态平衡[3-4]。目前,抗生素类废水处理技术主要有生物法、物理法,化学法等[5]。但由于抗生素类废水具有杀菌性强的特点,不易被生物降解,物理法也只能对污染物进行转移,不能对其彻底去除[6]。因而,寻求高效彻底的治理工艺成为研究热点。
传统Fenton法在处理难降解、有毒有害有机物方面具有独特优势[7],但其在发挥优势的同时,自身也存在许多缺陷:需在较低pH下(<4.0)反应,催化剂难分离而无法重复利用;反应体系中外加铁离子会造成溶液色度的增加,且反应后要重新调节pH。这不仅增加了处理成本,还会生成铁泥,给污水处理造成不便[8]。为了能在更宽的pH范围下提升Fenton活性,充分分离、回收和循环利用催化剂,众多研究已趋于非均相Fenton反应[9]。非均相Fenton反应体系具有反应条件温和,操作简单,对降解物无选择性,且有处理效率高等优点而被广泛使用[10]。但非均相铁基芬顿体系在非酸性条件下具有易丧失芬顿活性的缺陷[11],故诸多研究者已开始关注其他具有芬顿活性的金属离子。有研究发现,金属离子在pH为5.5~9.5时,类芬顿活性顺序为Cu(Ⅱ)>Cr(Ⅲ)>Co(Ⅱ)>Fe(Ⅲ)>Mn(Ⅱ)>Ni(Ⅱ),Cu(Ⅱ)/H2O2体系产生羟基自由基(·OH)能力最强[12]。Zn2+与Cu2+有相近离子尺寸和电子环境,且具有Fenton催化活性,因此,添加Zn2+与Cu2+发挥双金属间协同作用,可以提高催化剂的活性,同时可减少金属离子溶出[13]。
本研究采用化学共沉淀法制备以Cu为核心元素、掺杂Zn元素的非均相铜基催化剂,通过正交实验研究了Cu/Zn金属盐投加比例、模板剂葡萄糖添加量、反应液pH、焙烧温度等因素对催化剂催化降解CIP的影响;利用XRD、SEM、BET、XPS等表征手段对优选出的Cu/Zn催化剂进行分析表征,探讨了Zn掺杂元素对Cu/Zn催化剂的催化性能影响;考察了Cu/Zn催化剂投加量、H2O2投加量、溶液初始pH等对CIP的最优条件,同时研究了反应体系的H2O2消耗量和·OH生成量,最后探讨了非均相铜基催化剂对CIP的降解机理。
Cu/Zn非均相Fenton催化剂的制备及其对环丙沙星的降解效果
Preparation of Cu/Zn heterogeneous Fenton catalyst and its degradation effect of ciprofloxacin
-
摘要: 针对传统类Fenton法需在低pH范围内反应的问题,通过正交实验对以铜基为核心Cu/Zn催化剂的化学共沉淀法制备工艺进行了优化,并用XRD、SEM、BET和XPS等测试手段对优选出的催化剂进行了表征;采用单因素分析法考察了优化出的Cu/Zn非均相Fenton催化剂对环丙沙星(CIP)的催化降解效果,并对CIP的催化降解中间产物进行了检测,由此提出了可能的降解路径。结果表明:Cu/Zn金属盐摩尔比是影响Cu/Zn催化剂催化降解CIP的主要因素。优化制备的Cu/Zn催化剂主要组分是CuO,对环丙沙星具有较高的催化活性。在CIP浓度为20 mg·L−1、Cu/Zn催化剂投加量为3.0 g·L−1、H2O2投加量为149.55 mmol·L−1、pH为5.0的条件下,反应90 min时CIP降解率达95.0%。所制备的Cu/Zn非均相Fenton催化剂能在pH为3.0~7.0下保持较好的催化反应活性,且氧化剂H2O2在反应体系中可达86.0%的利用率。Cu/Zn催化剂具有良好的稳定性和较低的金属离子浸出浓度。通过LC-MS分析,检测出了CIP的4种催化降解中间产物,并且发现CIP是从·OH攻击哌嗪环开始降解的。以上结果可为进一步探索Cu/Zn非均相芬顿催化剂降解其他类似目标污染物性能影响提供参考。Abstract: Aiming at the problem of the traditional Fenton reaction occurringwithin the low pH range, the preparation process of the chemical coprecipitation method using copper as the core Cu/Zn catalyst was optimized through orthogonal experiments, and the optimized catalyst was characterized by XRD, SEM, BET and XPS. The degradation effect of ciprofloxacin (CIP) by this Cu/Zn heterogeneous Fenton catalyst was investigated through the single factor analysis, the corresponding catalytic degradation intermediates of CIP were detected and the possible degradation pathways were proposed. The experimental results showed that the molar ratio of Cu/Zn metal salt was the major factor affecting the catalytic degradation of CIP by the Cu/Zn catalyst. The main component of the optimized Cu/Zn catalyst was CuO with high catalytic activity for CIP. Under the optimal conditions such as catalyst dosage of 3.0 g·L−1, H2O2 dosage of 149.55 mol·L−1, pH 5.0, the degradation rate of CIP could reach up to 95.0% after 90 min at the CIP initial concentration of 20 mg·L−1. The optimized Cu/Zn heterogeneous Fenton catalyst could maintain high catalytic activity at pH 3.0~7.0, and the utilization rate of oxidant H2O2 could reach 86.0% in the reaction system. The Cu/Zn catalyst had a good stability and low leaching concentration of metal ions. Based on LC-MS analysis, the four intermediate products of CIP degradation were detected, and we could infer that the degradation occurred on the piperazine ring of CIP by ·OH attack. The result can provide the theoretical basis for further exploring the effect of Cu/Zn heterogeneous Fenton catalyst on the degradation of other similar target pollutants.
-
Key words:
- heterogeneous Fenton /
- orthogonal experiment /
- Cu/Zn catalyst /
- CIP /
- degradation mechanism
-
表 1 正交实验因素及水平
Table 1. Factors and levels of orthogonal experiment
水平 因素 A(Cu/Zn
金属盐摩尔比)B(模板剂添
加量)/(mol·L−1)C(反应液
pH)D(焙烧
温度)/℃1 10∶1 0.01 3.5 300 2 10∶2 0.02 5.0 500 3 10∶3 0.03 7.0 700 表 2 正交实验结果与极差分析
Table 2. Results of the orthogonal experiment and range analysis
实验号 因素 CIP降解率/% A B C D 1 1 1 1 1 82.3 2 1 2 2 2 91.0 3 1 3 3 3 65.4 4 2 1 2 3 77.2 5 2 2 3 1 56.6 6 2 3 1 2 22.1 7 3 1 3 2 69.3 8 3 2 1 3 87.4 9 3 3 2 1 84.5 K1j 79.57 76.27 63.93 74.47 K2j 51.97 78.33 84.23 60.80 K3j 80.4 57.33 63.77 76.67 Rj 28.43 21.00 20.46 15.87 表 3 CIP降解产物LC-MS检测结果
Table 3. LC-MS detection results of CIP degradation products
可能物质 出峰时间/min 质荷比 m/z 化学式 CIP 1.680 332 ${{\rm{C}}_{17}}{{\rm{H}}_{18}}{\rm{F}}{{\rm{N}}_3}{\rm{O}}_3 $ A1 1.462 236 C13H12N2O3 A2 3.382 334 ${{\rm{C}}_{16}}{{\rm{H}}_{16}}{\rm{F}}{{\rm{N}}_3}{\rm{O}}_4 $ A3 3.556 291 C14H11FN2O4 A4 3.731 263 ${{\rm{C}}_{13}}{{\rm{H}}_{11}}{\rm{F}}{{\rm{N}}_2}{\rm{O}}_3 $ -
[1] GE L K, NA G S, ZHANG S Y, et al. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes[J]. Science of the Total Environment, 2015, 527-528: 12-17. doi: 10.1016/j.scitotenv.2015.04.099 [2] DORER C, VOGT C, NEU T R, et al. Characterization of toluene and ethylbenzene biodegradation under nitrate-, iron(III)- and manganese(IV)-reducing conditions by compound-specific isotope analysis[J]. Environmental Pollution, 2016, 211: 271-281. doi: 10.1016/j.envpol.2015.12.029 [3] LIU X, STEELE J C, MENG X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review[J]. Environmental Pollution, 2017, 223: 161-169. doi: 10.1016/j.envpol.2017.01.003 [4] LIU J, TAN L M, WANG J, et al. Complete biodegradation of chlorpyrifos by engineered Pseudomonas putida cells expressing surface-immobilized laccases[J]. Chemosphere, 2016, 157: 200-207. doi: 10.1016/j.chemosphere.2016.05.031 [5] 张昱, 唐妹, 田哲, 等. 制药废水中抗生素的去除技术研究进展[J]. 环境工程学报, 2018, 12(1): 1-14. doi: 10.12030/j.cjee.201801010 [6] LIANG Z J, ZHAO Z W, SUN T Y, et al. Adsorption of quinolone antibiotics in spherical mesoporous silica: Effects of the retained template and its alkyl chain length[J]. Journal of Hazardous Materials, 2016, 305: 8-14. doi: 10.1016/j.jhazmat.2015.11.033 [7] LIU Y Y, JIN W, ZHAO Y P, et al. Enhanced catalytic degradation of methylene blue by alpha-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions[J]. Applied Catalysis B: Environmental, 2017, 206: 642-652. doi: 10.1016/j.apcatb.2017.01.075 [8] VÄLITALO P, KRUGLOVA A, MIKOLA A, et al. Toxicological impacts of antibiotics on aquatic micro-organisms: A mini-review[J]. International Journal of Hygiene and Environmental Health, 2017, 220(3): 558-569. doi: 10.1016/j.ijheh.2017.02.003 [9] WANG N N, ZHENG T, ZHANG G S, et al. A review on Fenton-like processes for organic wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 762-787. doi: 10.1016/j.jece.2015.12.016 [10] BABA Y, YATAGAI T, HARADA T, et al. Hydroxyl radical generation in the photo-Fenton process: Effects of carboxylic acids on iron redox cycling[J]. Chemical Engineering Journal, 2015, 277: 229-241. doi: 10.1016/j.cej.2015.04.103 [11] 张娟娟, 张西慧. 非均相Fenton催化降解酚类化合物的研究进展[J]. 工业水处理, 2016, 36(1): 15-20. doi: 10.11894/1005-829x.2016.36(1).015 [12] STRLIČ M, KOLAR J, ŠELIH V S, et al. A comparative study of several transition metals in Fenton-like reaction systems at circum-neutral pH[J]. Acta Chimica Slovenica, 2003, 50(4): 619-632. [13] 杨浩, 郑华艳, 常瑜, 等. 以共沉淀法为基础的铜基催化剂制备新技术的研究进展[J]. 化工进展, 2014, 33(2): 379-386. [14] 刘小为, 陈忠林, 沈吉敏, 等. 硫酸钛光度法测定O3/H2O2体系中低浓度H2O2[J]. 中国给水排水, 2010, 26(16): 126-129. [15] 陈闪闪. 新型钴铜复合非均相类Fenton催化剂的制备及其性能研究[D]. 镇江: 江苏大学, 2016. [16] CHEN Q R, HAN L, GAO C B, et al. Synthesis of monodispersed mesoporous silica spheres (MMSSs) with controlled particle size using gemini surfactant[J]. Microporous and Mesoporous Materials, 2010, 128(1/2/3): 203-212. [17] 何余生, 李忠, 奚红霞, 等. 气固吸附等温线的研究进展[J]. 离子交换与吸附, 2004, 20(4): 376-384. doi: 10.3321/j.issn:1001-5493.2004.04.012 [18] LÓPEZ-SUÁREZ F E, PARRES-ESCLAPEZ S, BUENO-LÓPEZ A, et al. Role of surface and lattice copper species in copper-containing (Mg/Sr) TiO3 perovskite catalysts for soot combustion[J]. Applied Catalysis B: Environmental, 2009, 93(1/2): 82-89. [19] 薛佼, 王润伟, 张宗弢, 等. 新型Zn2+掺杂C/Nb2O5纳米催化剂的制备及光催化性能[J]. 高等学校化学学报, 2018, 39(2): 319-326. doi: 10.7503/cjcu20170346 [20] 田志茗, 王鑫月. La掺杂ZnO/SBA-15催化剂的制备及光催化降解孔雀石绿[J]. 化学通报, 2019, 82(4): 334-339. [21] 毕慧平, 刘立忠, 丁佳佳, 等. Cu-石墨烯类Fenton催化剂的制备及催化活性[J]. 无机化学学报, 2014, 30(10): 2347-2352. [22] 杨岳主, 李玉平, 杨道武, 等. 铁铜催化剂非均相Fenton降解苯酚及机制研究[J]. 环境科学, 2013, 34(7): 2658-2664. [23] 喻德忠, 赵慧, 刘东. 聚合氯化钛在环丙沙星废水混凝处理中的应用[J]. 工业水处理, 2018, 38(9): 76-78. doi: 10.11894/1005-829x.2018.38(9).076 [24] JIANG S S, ZHANG H P, YAN Y, et al. Preparation and characterization of porous Fe-Cu mixed oxides modified ZSM-5 coating/PSSF for continuous degradation of phenol wastewater[J]. Microporous and Mesoporous Materials, 2017, 240: 108-116. doi: 10.1016/j.micromeso.2016.11.020 [25] LIU Y M, LIU J T, LIU S Z, et al. Reaction mechanisms of methanol synthesis from CO/CO2 hydrogenation on Cu2O(111): Comparison with Cu(111)[J]. Journal of CO2 Utilization, 2017, 20: 59-65. doi: 10.1016/j.jcou.2017.05.005 [26] 陈玉. 抗生素环丙沙星与Fe2+/Fe3+螯合行为对光-电芬顿降解效能与机理影响研究[D]. 北京: 北京交通大学, 2018. [27] JI Y F, FERRONATO C, SALVADOR A, et al. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics[J]. Science of the Total Environment, 2014, 472: 800-808. doi: 10.1016/j.scitotenv.2013.11.008 [28] AN T C, YANG H, LI G Y, et al. Kinetics and mechanism of advanced oxidation processes(AOPs) in degradation of ciprofloxacin in water[J]. Applied Catalysis B: Environmental, 2010, 94(3/4): 288-294. [29] JIANG C L, JI Y F, SHI Y Y, et al. Sulfate radical-based oxidation of fluoroquinolone antibiotics: Kinetics, mechanisms and effects of natural water matrices[J]. Water Research, 2016, 106: 507-517. doi: 10.1016/j.watres.2016.10.025 [30] ANTONIN V S, SANTOS M C, GARCIA-SEGURA S, et al. Electrochemical incineration of the antibiotic ciprofloxacin in sulfate medium and synthetic urine matrix[J]. Water Research, 2015, 83: 31-41. doi: 10.1016/j.watres.2015.05.066 [31] CHONG S, ZHANG G M, ZHANG N, et al. Diclofenac degradation in water by FeCeOx catalyzed H2O2: Influencing factors, mechanism and pathways[J]. Journal of Hazardous Materials, 2017, 334: 150-159. doi: 10.1016/j.jhazmat.2017.04.008