[1] |
NANCHARAIAH Y V, REDDY G K K. Aerobic granular sludge technology: mechanisms of granulation and biotechnological applications[J]. Bioresource Technology, 2018, 247: 1128-1143. doi: 10.1016/j.biortech.2017.09.131
|
[2] |
PRONK M, ABBAS B, AL-ZUHAIRY S H K, et al. Effect and behaviour of different substrates in relation to the formation of aerobic granular sludge[J]. Springer Berlin Heidelberg, 2015, 99(12): 5257-5268.
|
[3] |
KHAN A A, AHMAD M, GIESEN A. NEREDA®: An emerging technology for sewage treatment[J]. Water Practice and Technology, 2015, 10(4): 799-805. doi: 10.2166/wpt.2015.098
|
[4] |
HE Q L, ZHOU J, WANG H Y, et al. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor[J]. Bioresource Technology, 2016, 214: 1-8. doi: 10.1016/j.biortech.2016.04.088
|
[5] |
SENGAR A, BASHEER F, AZIZ A, et al. Aerobic granulation technology: Laboratory studies to full scale practices[J]. Journal of Cleaner Production, 2018, 197: 616-632. doi: 10.1016/j.jclepro.2018.06.167
|
[6] |
WANG B B, PENG D C, HOU Y P, et al. The important implications of particulate substrate in determining the physicochemical characteristics of extracellular polymeric substances (EPS) in activated sludge[J]. Water Research, 2014, 58: 1-8. doi: 10.1016/j.watres.2014.03.060
|
[7] |
DAVID G W, JULIEN M, ALESSANDRO B, et al. Multilevel correlations in the biological phosphorus removal process: From bacterial enrichment to conductivity-based metabolic batch tests and poly-phosphatase assays[J]. Biotechnology and Bioengineering, 2014, 111(12): 2421-2435. doi: 10.1002/bit.25320
|
[8] |
王杰, 彭永臻, 杨雄, 等. 不同碳源种类对好氧颗粒污泥合成PHA的影响[J]. 中国环境科学, 2015, 35(8): 2360-2366. doi: 10.3969/j.issn.1000-6923.2015.08.014
|
[9] |
李冬, 田海成, 梁瑜海, 等. 水质条件对厌氧氨氧化颗粒污泥EPS含量的影响[J]. 哈尔滨工业大学学报, 2017, 49(2): 6-12. doi: 10.11918/j.issn.0367-6234.2017.02.002
|
[10] |
SHI Y H, HUANG J H, ZENG G M, et al. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview[J]. Chemosphere, 2017, 180: 396-411. doi: 10.1016/j.chemosphere.2017.04.042
|
[11] |
宋悦, 魏亮亮, 赵庆良, 等. 活性污泥胞外聚合物的组成与结构特点及环境行为[J]. 环境保护科学, 2017, 43(2): 35-40.
|
[12] |
TENG J H, WU M F, CHEN J R, et al. Different fouling propensities of loosely and tightly bound extracellular polymeric substances (EPSs) and the related fouling mechanisms in a membrane bioreactor[J]. Chemosphere, 2020, 255: 126953. doi: 10.1016/j.chemosphere.2020.126953
|
[13] |
郭安, 王然登, 彭永臻. 好氧颗粒污泥形成及稳定运行的研究进展[J]. 水处理技术, 2015, 41(1): 15-19.
|
[14] |
王冬, 王少坡, 周瑶, 等. 胞外聚合物在污水处理过程中的功能及其控制策略[J]. 工业水处理, 2019, 39(10): 14-19. doi: 10.11894/iwt.2018-0931
|
[15] |
周俊, 周立祥, 黄焕忠. 污泥胞外聚合物的提取方法及其对污泥脱水性能的影响[J]. 环境科学, 2013, 34(7): 2752-2757.
|
[16] |
王然登. 生物除磷体系中颗粒污泥的形成机理及其特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
|
[17] |
彭永臻, 吴蕾, 马勇, 等. 好氧颗粒污泥的形成机制、特性及应用研究进展[J]. 环境科学, 2010, 31(2): 273-281.
|
[18] |
WAGNER A, WEISSBRODT D G, MANGUIN V, et al. Effect of particulate organic substrate on aerobic granulation and operating conditions of sequencing batch reactors[J]. Water Research, 2015, 85: 158-166. doi: 10.1016/j.watres.2015.08.030
|
[19] |
LAYER M, ADLER A, REYNAERT E, et al. Organic substrate diffusibility governs microbial community composition, nutrient removal performance and kinetics of granulation of aerobic granular sludge[J]. Water Research, 2019, 4: 1-16.
|
[20] |
CALUWE M, DOBBELEERS T, D'AES J, et al. Formation of aerobic granular sludge during the treatment of petrochemical wastewater[J]. Bioresource Technology, 2017, 238: 559-567. doi: 10.1016/j.biortech.2017.04.068
|
[21] |
李冬, 吴青, 梁瑜海, 等. 不同基质条件对亚硝化污泥胞外聚合物的影响[J]. 哈尔滨工业大学学报, 2015, 47(4): 81-86. doi: 10.11918/j.issn.0367-6234.2015.04.014
|
[22] |
HE Q L, SONG Q, ZHANG S L, et al. Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sequencing batch reactor with mixed carbon sources: reactor performance, extracellular polymeric substances and microbial successions[J]. Chemical Engineering Journal, 2018, 331: 841-849. doi: 10.1016/j.cej.2017.09.060
|
[23] |
YE F X, PENG G, LI Y, et al. Influences of influent carbon source on extracellular polymeric substances (EPS) and physicochemical properties of activated sludge[J]. Chemosphere, 2011, 84(9): 1250-1255. doi: 10.1016/j.chemosphere.2011.05.004
|
[24] |
WANG B B, PENG D C, HOU Y P, et al. The important implications of particulate substrate in determining the physicochemical characteristics of extracellular polymeric substances (EPS) in activated sludge[J]. Water Research, 2014, 58(1): 1-8.
|
[25] |
张杰, 张金库, 李冬, 等. 淀粉对除磷污泥颗粒化的影响[J]. 哈尔滨工业大学学报, 2016, 48(2): 21-26. doi: 10.11918/j.issn.0367-6234.2016.02.004
|
[26] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[27] |
温丹丹, 袁林江, 陈希, 等. 3种不同工艺切换下活性污泥菌群结构及代谢产物对污泥沉降性能的影响[J]. 环境科学, 2018, 39(10): 4644-4652.
|
[28] |
BEER D, FLAHARTY V, THAVEESRI J. Distribution of extracellular polysaccharides and flotation of anaerobic sludge[J]. Applied Microbiology and Biotechnology, 1996, 46(2): 197-201. doi: 10.1007/s002530050805
|
[29] |
刘燕, 王越兴, 莫华娟, 等. 有机底物对活性污泥胞外聚合物的影响[J]. 环境化学, 2004, 23(3): 252-257. doi: 10.3321/j.issn:0254-6108.2004.03.003
|
[30] |
BARR J J, COOK A E, BOND P L, et al. Granule formation mechanisms within an aerobic wastewater system for phosphorus removal[J]. Applied and Environmental Microbiology, 2010, 76(22): 7588-7597. doi: 10.1128/AEM.00864-10
|
[31] |
高永青, 张帅, 张树军, 等. 实际城市污水培养好氧颗粒污泥的中试研究[J]. 中国给水排水, 2017, 33(5): 22-25.
|
[32] |
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science and Technology, 2003, 37(24): 5701-5710. doi: 10.1021/es034354c
|
[33] |
YU G H, WU M J, LUO Y H, et al. Fluorescence excitation emission spectroscopy with regional integration analysis for assessment of compost maturity[J]. Waste Management, 2011, 31(8): 1729-1736. doi: 10.1016/j.wasman.2010.10.031
|
[34] |
CHAI X L, LIU G X, ZHAO X, et al. Fluorescence excitation-emission matrix combined with regional integration analysis to characterize the composition and transformation of humic and fulvic acids from landfill at different stabilization stages[J]. Waste Management, 2012, 32(3): 438-447. doi: 10.1016/j.wasman.2011.10.011
|
[35] |
ZHU L, ZHOU J, LV M, et al. Specific component comparison of extracellular polymeric substances (EPS) in flocs and granular sludge using EEM and SDS-PAGE[J]. Chemosphere, 2015, 121: 26-32. doi: 10.1016/j.chemosphere.2014.10.053
|
[36] |
李定昌, 王琦, 高景峰, 等. 不同粒径成熟好氧颗粒污泥EPS的三维荧光光谱特性[J]. 中国给水排水, 2018, 34(7): 26-31.
|
[37] |
程祯, 刘永军, 刘喆, 等. 好氧污泥强化造粒过程中EPS的分布及变化规律[J]. 环境工程学报, 2015, 9(5): 2033-2040. doi: 10.12030/j.cjee.20150501
|
[38] |
李冬, 王樱桥, 张杰, 等. 高径比对生活污水好氧颗粒污泥系统的影响[J]. 中国环境科学, 2019, 39(1): 141-148. doi: 10.3969/j.issn.1000-6923.2019.01.015
|
[39] |
TAY J H, LIU Q S, LIU Y. The role of cellular polysaccharides in the formation and stability of aerobic granules[J]. Letters in Applied Microbiology, 2001, 33(3): 222-226. doi: 10.1046/j.1472-765x.2001.00986.x
|
[40] |
唐朝春, 刘名, 陈惠民, 等. 废水生物处理系统中胞外多聚物的研究进展[J]. 化工进展, 2014, 33(6): 1576-1581.
|
[41] |
PUNAL A, BRAUCHI S, REYES J G, et al. Dynamics of extracellular polymeric substances in UASB and EGSB reactors treating medium and low concentrated wastewaters[J]. Water Science and Technology, 2003, 48(6): 41-49. doi: 10.2166/wst.2003.0353
|
[42] |
SHENG G P, YU H Q, LI X Y, et al. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001
|
[43] |
杨明明, 刘子涵, 周杨, 等. 厌氧氨氧化颗粒污泥EPS及其对污泥表面特性的影响[J]. 环境科学, 2019, 40(5): 2341-2348.
|
[44] |
YUAN S S, GAO M M, MA H, et al. Qualitatively and quantitatively assessing the aggregation ability of sludge during aerobic granulation process combined XDLVO theory with physicochemical properties[J]. Journal of Environmental Sciences, 2018, 67(5): 157-163.
|
[45] |
LI H, ZHANG J F, SHEN L, et al. Production of polyhydroxyalkanoates by activated sludge: Correlation with extracellular polymeric substances and characteristics of activated sludge[J]. Chemical Engineering Journal, 2019, 361: 219-226. doi: 10.1016/j.cej.2018.12.066
|
[46] |
SOBECK D C, HIGGINS M J. Examination of three theories for mechanisms of cation-induced bioflocculation[J]. Water Research, 2002, 36(3): 527-538. doi: 10.1016/S0043-1354(01)00254-8
|
[47] |
GONZALEZ-GIL G, HOLLIGER C. Aerobic granules: Microbial landscape and architecture, stages, and practical implications[J]. Applied and Environmental Microbiology, 2014, 80(11): 3433-3441. doi: 10.1128/AEM.00250-14
|