[1] |
NIDHEESH P V, ZHOU M, OTURAN M A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes[J]. Chemosphere, 2018, 197: 210-227. doi: 10.1016/j.chemosphere.2017.12.195
|
[2] |
GÜRSES A, AÇIKYILDIZ M, GÜNEŞ K, et al. Classification of Dye and Pigments[M]. Dyes and Pigments, Springer International Publishing, Cham, 2016.
|
[3] |
AI Z H, LI J P, ZHANG L Z, et al. Rapid decolorization of azo dyes in aqueous solution by an ultrasound-assisted electrocatalytic oxidation process[J]. Ultrasonics Sonochemistry, 2010, 17(2): 370-375. doi: 10.1016/j.ultsonch.2009.10.002
|
[4] |
李新, 刘勇弟, 孙贤波, 等. UV/H2O2法对印染废水生化出水中不同种类有机物的去除效果[J]. 环境科学, 2012, 33(8): 2728-2734.
|
[5] |
NIDHEESH P V, GANDHIMATHI R, RAMESH S T, Degradation of dyes from aqueous solution by Fenton processes: A review[J]. Environmental Science and Pollution Research, 2013, 20(4): 2099-2132.
|
[6] |
饶砚迪, 盛义平, 刘琦, 等. TiO2-Ca(OH)2-石墨的制备与光催化降解染料废水[J]. 工业水处理, 2018, 38(2): 48-51. doi: 10.11894/1005-829x.2018.38(2).048
|
[7] |
李丽华, 马明明, 任庆军, 等. Fe3O4/三维石墨烯非均相Fenton催化降解酸性红B[J]. 工业水处理, 2017, 37(8): 25-29. doi: 10.11894/1005-829x.2017.37(8).025
|
[8] |
朱应良, 万金泉, 马邕文, 等. 电化学协同过硫酸盐法氧化处理橙黄G染料废水[J]. 水处理技术, 2016, 42(8): 48-51.
|
[9] |
ZHANG Y L, WANG W L, LEE M Y, et al. Promotive effects of vacuum-UV/UV (185/254 nm) light on elimination of recalcitrant trace organic contaminants by UV-AOPs during wastewater treatment and reclamation: A review[J]. Science of the Total Environment, 2021: 151776.
|
[10] |
HUANG H B, LEUNG D Y C, KWONG P C W, et al. Enhanced photocatalytic degradation of methylene blue under vacuum ultraviolet irradiation[J]. Catalysis Today, 2013, 201: 189-194. doi: 10.1016/j.cattod.2012.06.022
|
[11] |
WU Z D, YANG L X, TANG Y B, et al. Dimethoate degradation by VUV/UV process: Kinetics, mechanism and economic feasibility[J]. Chemosphere, 2021, 273: 129724. doi: 10.1016/j.chemosphere.2021.129724
|
[12] |
SHI G, NISHIZAWA S, MATSUSHITA T, et al. Computational fluid dynamics-based modeling and optimization of flow rate and radiant exitance for 1, 4-dioxane degradation in a vacuum ultraviolet photoreactor[J]. Water Research, 2021, 197: 117086. doi: 10.1016/j.watres.2021.117086
|
[13] |
HE X, CHI H Z, HE M R, et al. Efficient removal of halogenated phenols by vacuum-UV system through combined photolysis and ·OH oxidation: Efficiency, mechanism and economic analysis[J]. Journal of Hazardous Materials, 2021, 403: 123286. doi: 10.1016/j.jhazmat.2020.123286
|
[14] |
包瑞格, 真空紫外光解去除水中抗生素头孢哌酮效能与机理研究[D]. 北京: 北京交通大学, 2018.
|
[15] |
KORMANN C, BAHNEMANN D W, HOFFMANN M R, Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand[J]. Environmental Science & Technology, 1988, 22(7): 798.
|
[16] |
LI M K, QIANG Z M, PULGARIN C, et al. Accelerated methylene blue (MB) degradation by Fenton reagent exposed to UV or VUV/UV light in an innovative micro photo-reactor[J]. Applied Catalysis B:Environmental, 2016, 187: 83-89. doi: 10.1016/j.apcatb.2016.01.014
|
[17] |
STYLIDI M, KONDARIDES D I, VERYKIOS X E, Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions[J]. Applied Catalysis B: Environmental, 2004, 47(3): 189-201.
|
[18] |
HORIKOSHI S, SAITOU A, HIDAKA H, et al. Environmental remediation by an integrated microwave/UV illumination method. V. Thermal and nonthermal effects of microwave radiation on the photocatalyst and on the photodegradation of Rhodamine-B under UV/Vis radiation[J]. Environmental Science & Technology, 2003, 37(24): 5813-5822.
|
[19] |
GETOFF N, SCHENCK G O, Primary products of liquid water photolysis at 1236, 1470 and 1849 Å[J]. Photochemistry and Photobiology, 1968, 8(3): 167-178.
|
[20] |
ČEHOVIN M, MEDIC A, KOMPARE B, et al. The enhancement of H2O2/UV AOPs for the removal of selected organic pollutants from drinking water with hydrodynamic cavitation[J]. Acta Chimica Slovenica, 2016, 2759: 837-849.
|
[21] |
ZHONG X, XIANG L J, ROYER S, et al. Degradation of CI Acid Orange 7 by heterogeneous Fenton oxidation in combination with ultrasonic irradiation[J]. Journal of Chemical Technology and Biotechnology, 2011, 86(7): 970-977. doi: 10.1002/jctb.2608
|
[22] |
HOU M F, LIAO L, ZHANG W D, et al. Degradation of rhodamine B by Fe(0)-based Fenton process with H2O2[J]. Chemosphere, 2011, 83(9): 1279-1283. doi: 10.1016/j.chemosphere.2011.03.005
|
[23] |
ZOSCHKE K, BORNICK H, WORCH E, Vacuum-UV radiation at 185 nm in water treatment: A review[J]. Water Research, 2014, 52: 131-145.
|
[24] |
BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805
|
[25] |
WANG J L, XU L J. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(3): 251-325. doi: 10.1080/10643389.2010.507698
|
[26] |
GU X G, LU S G, QIU Z F, et al. Photodegradation performance of 1, 1, 1-trichloroethane in aqueous solution: In the presence and absence of persulfate[J]. Chemical Engineering Journal, 2013, 215: 29-35.
|
[27] |
SOLTANI T, ENTEZARI M H. Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation[J]. Journal of Molecular Catalysis A:Chemical, 2013, 377: 197-203. doi: 10.1016/j.molcata.2013.05.004
|
[28] |
OON Y S, ONG S A, HO L N, et al. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation[J]. Journal of Hazardous Materials, 2017, 325: 170-177. doi: 10.1016/j.jhazmat.2016.11.074
|
[29] |
PARK H, CHOI W. Visible light and Fe(III)-mediated degradation of Acid Orange 7 in the absence of H2O2[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2003, 159(3): 241-247. doi: 10.1016/S1010-6030(03)00141-2
|
[30] |
RASHEED T, BILAL M, IQBAL H M N, et al. TiO2/UV-assisted rhodamine B degradation: Putative pathway and identification of intermediates by UPLC/MS[J]. Environmental technology, 2018, 39(12): 1533-1543. doi: 10.1080/09593330.2017.1332109
|
[31] |
YOGI C, KOJIMA K, WADA N, et al. Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film[J]. Thin Solid Films, 2008, 516(17): 5881-5884. doi: 10.1016/j.tsf.2007.10.050
|
[32] |
BEHNAJADY M A, MODIRSHAHLA N, TABRIZI S B, et al. Ultrasonic degradation of Rhodamine B in aqueous solution: Influence of operational parameters[J]. Journal of Hazardous Materials, 2008, 152(1): 381-386. doi: 10.1016/j.jhazmat.2007.07.019
|
[33] |
LI J, ZHANG Q, CHEN B, et al. Hydrogen peroxide formation in water during the VUV/UV irradiation process: Impacts and mechanisms of selected anions[J]. Environmental Research, 2021, 195: 110751. doi: 10.1016/j.envres.2021.110751
|
[34] |
MOUSSAVI G, REZAEI M, POURAKBAR M. Comparing VUV and VUV/Fe2+ processes for decomposition of cloxacillin antibiotic: Degradation rate and pathways, mineralization and by-product analysis[J]. Chemical Engineering Journal, 2018, 332: 140-149. doi: 10.1016/j.cej.2017.09.057
|