[1] |
汪琪, 张梦佳, 陈洪斌. 水环境中药物类PPCPs的赋存及处理技术进展 [J]. 净水技术, 2020, 39(1): 43-51. doi: 10.15890/j.cnki.jsjs.2020.01.009
WANG Q, ZHANG M J, CHEN H B. Review on occurrence and treatment technology of PPCPs in water environment [J]. Water Purification Technology, 2020, 39(1): 43-51(in Chinese). doi: 10.15890/j.cnki.jsjs.2020.01.009
|
[2] |
谢鹏. 微藻对五种典型PPCPs的去除效能及生物质资源的回收[D]. 哈尔滨: 哈尔滨工业大学, 2017.
XIE P. Research on degraduation of typical PPCPs and resources productivity by microalgae[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
|
[3] |
缪惟民. 我国已成为世界原料药第一出口国 [J]. 上海包装, 2007(10): 11. doi: 10.19446/j.cnki.1005-9423.2007.10.004
MIAO W M. China's become No. 1 exported country of medicinal materials in the world [J]. Shanghai Packaging, 2007(10): 11(in Chinese). doi: 10.19446/j.cnki.1005-9423.2007.10.004
|
[4] |
DAUGHTON C G, TERNES T A. Pharmaceuticals and personal care products in the environment: Agents of subtle change?[J]. Environmental Health Perspectives, 1999, 107(Suppl 6): 907-938.
|
[5] |
汤迎, 虢清伟, 洪澄泱, 等. 污水处理厂内PPCPs赋存情况及去除因素分析 [J]. 工业水处理, 2014, 34(2): 1-4,10. doi: 10.3969/j.issn.1005-829X.2014.02.001
TANG Y, GUO Q W, HONG C Y, et al. Occurrence and removing factors of pharmaceuticals and personal care products in sewage treatment plants [J]. Industrial Water Treatment, 2014, 34(2): 1-4,10(in Chinese). doi: 10.3969/j.issn.1005-829X.2014.02.001
|
[6] |
LI J N, ZHOU Q Z, CAMPOS L C. Removal of selected emerging PPCP compounds using greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland [J]. Water Research, 2017, 126: 252-261. doi: 10.1016/j.watres.2017.09.002
|
[7] |
TERNES T A. Occurrence of drugs in German sewage treatment plants and rivers [J]. Water Research, 1998, 32(11): 3245-3260. doi: 10.1016/S0043-1354(98)00099-2
|
[8] |
VALCÁRCEL Y, ALONSO S G, RODRÍGUEZ-GIL J L, et al. Seasonal variation of pharmaceutically active compounds in surface (Tagus River) and tap water (Central Spain) [J]. Environmental Science and Pollution Research, 2013, 20(3): 1396-1412. doi: 10.1007/s11356-012-1099-2
|
[9] |
BUSER H R, POIGER T, MÜLLER M D. Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: Rapid photodegradation in a lake [J]. Environmental Science & Technology, 1998, 32(22): 3449-3456.
|
[10] |
FEITOSA-FELIZZOLA J, CHIRON S. Occurrence and distribution of selected antibiotics in a small Mediterranean stream (Arc River, Southern France) [J]. Journal of Hydrology, 2009, 364(1/2): 50-57.
|
[11] |
KAWAHATA H, OHTA H, INOUE M, et al. Endocrine disrupter nonylphenol and bisphenol A contamination in Okinawa and Ishigaki Islands, Japan: Within coral reefs and adjacent river mouths [J]. Chemosphere, 2004, 55(11): 1519-1527. doi: 10.1016/j.chemosphere.2004.01.032
|
[12] |
GINEBREDA A, MUÑOZ I, de ALDA M L, et al. Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain) [J]. Environment International, 2010, 36(2): 153-162. doi: 10.1016/j.envint.2009.10.003
|
[13] |
PAÍGA P, SANTOS L H M L M, AMORIM C G, et al. Pilot monitoring study of ibuprofen in surface waters of north of Portugal [J]. Environmental Science and Pollution Research, 2013, 20(4): 2410-2420. doi: 10.1007/s11356-012-1128-1
|
[14] |
ZOU S C, XU W H, ZHANG R J, et al. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities [J]. Environmental Pollution, 2011, 159(10): 2913-2920. doi: 10.1016/j.envpol.2011.04.037
|
[15] |
YANG J F, YING G G, ZHAO J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China [J]. Journal of Environmental Science and Health, Part B, 2011, 46(3): 272-280. doi: 10.1080/03601234.2011.540540
|
[16] |
RAMASWAMY B R, SHANMUGAM G, VELU G, et al. GC-MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers [J]. Journal of Hazardous Materials, 2011, 186(2/3): 1586-1593.
|
[17] |
MORRALL D, MCAVOY D, SCHATOWITZ B, et al. A field study of triclosan loss rates in river water (Cibolo Creek, TX) [J]. Chemosphere, 2004, 54(5): 653-660. doi: 10.1016/j.chemosphere.2003.08.002
|
[18] |
PAÍGA P, SANTOS L H M L M, DELERUE-MATOS C. Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC-MS/MS [J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 135: 75-86. doi: 10.1016/j.jpba.2016.12.013
|
[19] |
CHEE-SANFORD J C, MACKIE R I, KOIKE S, et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste [J]. Journal of Environmental Quality, 2009, 38(3): 1086-1108. doi: 10.2134/jeq2008.0128
|
[20] |
ELMUND G K, MORRISON S M, GRANT D W, et al. Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste [J]. Bulletin of Environmental Contamination and Toxicology, 1971, 6(2): 129-132. doi: 10.1007/BF01540093
|
[21] |
肖梦莹. 高铁酸盐高级氧化法处理典型三环类抗抑郁药废水研究[D]. 武汉: 华中科技大学, 2014.
XIAO M Y. Experimental study on ferrate(Ⅵ) advanced oxidation process dispose wastewater containing typical tricyclic antidepressant[D]. Wuhan: Huazhong University of Science and Technology, 2014(in Chinese).
|
[22] |
LORENZEN A, HENDEL J G, CONN K L, et al. Survey of hormone activities in municipal biosolids and animal manures [J]. Environmental Toxicology, 2004, 19(3): 216-225. doi: 10.1002/tox.20014
|
[23] |
MOJIRI A, ZHOU J L, ROBINSON B, et al. Pesticides in aquatic environments and their removal by adsorption methods [J]. Chemosphere, 2020, 253: 126646. doi: 10.1016/j.chemosphere.2020.126646
|
[24] |
. 农业部发布《关于发布〈饲料药物添加剂使用规范〉的通知》[J]. 中国兽药杂志, 2001, 35(4): 40-50.
The ministry of agriculture of the People's Republic of China, The Ministry of Agriculture issued the "Notice on Issuing the "Regulations for the Use of Feed Drug Additives"" [J]. Chinese Journal of Veterinary Drug, 2001, 35(4): 40-50(in Chinese).
|
[25] |
蔡辉益, 刘国华. 饲料药物添加剂应用现状及未来展望 [J]. 中国家禽, 2006, 28(24): 1-4. doi: 10.3969/j.issn.1004-6364.2006.24.002
CAI H Y, LIU G H. Application status and future prospects of feed drug additives [J]. China Poultry, 2006, 28(24): 1-4(in Chinese). doi: 10.3969/j.issn.1004-6364.2006.24.002
|
[26] |
ARCHER E, PETRIE B, KASPRZYK-HORDERN B, et al. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters [J]. Chemosphere, 2017, 174: 437-446. doi: 10.1016/j.chemosphere.2017.01.101
|
[27] |
KASPRZYK-HORDERN B, DINSDALE R M, GUWY A J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters [J]. Water Research, 2009, 43(2): 363-380. doi: 10.1016/j.watres.2008.10.047
|
[28] |
CASTIGLIONI S, BAGNATI R, FANELLI R, et al. Removal of pharmaceuticals in sewage treatment plants in Italy [J]. Environmental Science & Technology, 2006, 40(1): 357-363.
|
[29] |
LAJEUNESSE A, SMYTH S A, BARCLAY K, et al. Distribution of antidepressant residues in wastewater and biosolids following different treatment processes by municipal wastewater treatment plants in Canada [J]. Water Research, 2012, 46(17): 5600-5612. doi: 10.1016/j.watres.2012.07.042
|
[30] |
METCALFE C D, CHU S G, JUDT C, et al. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed [J]. Environmental Toxicology and Chemistry, 2010, 29(1): 79-89. doi: 10.1002/etc.27
|
[31] |
赵高峰, 杨林, 周怀东, 等. 北京某污水处理厂出水中药物和个人护理品的污染现状[J]. 中国环境监测, 2011, 27(增刊1): 63-67.
ZHAO G F, YANG L, ZHOU H D, et al. Pollution status of pharmaceuticals and personal care productions in a certain sewage plant in Beijing[J]. Environmental Monitoring in China, 2011, 27(Sup 1): 63-67(in Chinese).
|
[32] |
王剑斌. 药品和个人护理用品类污染物(PPCPs)在北江流域的浓度分布特性初探 [J]. 广州环境科学, 2019, 34(1): 39-43.
WANG J B. A preliminary study on the concentration distribution characteristics of pharmaceutical and personal care product pollutants (PPCPs) in Beijiang River Basin [J]. Guangzhou Environmental Science, 2019, 34(1): 39-43(in Chinese).
|
[33] |
秦秦, 宋科, 孙丽娟, 等. 药品和个人护理品(PPCPs)在土壤中的迁移转化和毒性效应研究进展 [J]. 生态环境学报, 2019, 28(5): 1046-1054. doi: 10.16258/j.cnki.1674-5906.2019.05.023
QIN Q, SONG K, SUN L J, et al. Transference-transformation and toxicological effect of pharmaceuticals and personal care products in soils [J]. Ecology and Environmental Sciences, 2019, 28(5): 1046-1054(in Chinese). doi: 10.16258/j.cnki.1674-5906.2019.05.023
|
[34] |
FORAN C M, BENNETT E R, BENSON W H. Developmental evaluation of a potential non-steroidal estrogen: Triclosan [J]. Marine Environmental Research, 2000, 50(1/2/3/4/5): 153-156.
|
[35] |
SCOTT A P, KATSIADAKI I, KIRBY M F, et al. Relationship between sex steroid and vitellogenin concentrations in flounder (Platichthys flesus) sampled from an estuary contaminated with estrogenic endocrine-disrupting compounds[J]. Environmental Health Perspectives, 2006, 114(Suppl 1): 27-31.
|
[36] |
ROBERTS R A, LASKIN D L, SMITH C V, et al. Nitrative and oxidative stress in toxicology and disease [J]. Toxicological Sciences, 2009, 112(1): 4-16. doi: 10.1093/toxsci/kfp179
|
[37] |
周程, 吴南翔, 范宏亮. 药物及个人护理品对鱼类毒性的研究进展 [J]. 环境与职业医学, 2017, 34(12): 1123-1129.
ZHOU C, WU N X, FAN H L. Research advance on toxicity of pharmaceuticals and personal care products on fish [J]. Journal of Environmental & Occupational Medicine, 2017, 34(12): 1123-1129(in Chinese).
|
[38] |
BARTOSKOVA M, DOBSIKOVA R, STANCOVA V, et al. Evaluation of ibuprofen toxicity for zebrafish (Danio rerio) targeting on selected biomarkers of oxidative stress[J]. Neuro Endocrinology Letters, 2013, 34(Suppl 2): 102-108.
|
[39] |
梁惜梅. 诺氟沙星和三氯生对剑尾鱼的毒性效应[D]. 广州: 暨南大学, 2010.
LIANG X M. Toxicity of norfloxacin and triclosan to Xiphophorus helleri (swordtail fish)[D]. Guangzhou: Jinan University, 2010(in Chinese).
|
[40] |
ROOKLIDGE S J. Environmental antimicrobial contamination from terraccumulation and diffuse pollution pathways [J]. Science of the Total Environment, 2004, 325(1/2/3): 1-13.
|
[41] |
程晋鹏, 张合喜, 朱晓玲, 等. 双酚A对乳腺癌MCF-7细胞的增殖作用及对其癌基因EphA2和c-Myc的mRNA表达水平的影响 [J]. 环境与职业医学, 2006, 23(5): 369-372. doi: 10.3969/j.issn.1006-3617.2006.05.001
CHENG J P, ZHANG H X, ZHU X L, et al. The influence of bisphenol A on cell proliferation and mRNA expression of oncogene EphA2 & c-myc in MCF-7 breast cancer cells [J]. Journal of Environmental & Occupational Medicine, 2006, 23(5): 369-372(in Chinese). doi: 10.3969/j.issn.1006-3617.2006.05.001
|
[42] |
ADOLFSSON-ERICI M, PETTERSSON M, PARKKONEN J, et al. Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden [J]. Chemosphere, 2002, 46(9/10): 1485-1489.
|
[43] |
王朋华, 袁涛, 谭佑铭. 水环境药物污染对水生物和人体健康的影响 [J]. 环境与健康杂志, 2008, 25(2): 172-174. doi: 10.3969/j.issn.1001-5914.2008.02.033
WANG P H, YUAN T, TAN Y M. Effects of pharmaceuticals pollution in the aquatic environment on aquatic organism and human health [J]. Journal of Environment and Health, 2008, 25(2): 172-174(in Chinese). doi: 10.3969/j.issn.1001-5914.2008.02.033
|
[44] |
KINNEY C A, FURLONG E T, ZAUGG S D, et al. Survey of organic wastewater contaminants in biosolids destined for land application [J]. Environmental Science & Technology, 2006, 40(23): 7207-7215.
|
[45] |
ZENOBIO J E, SANCHEZ B C, ARCHULETA L C, et al. Effects of triclocarban, N, N-diethyl-meta-toluamide, and a mixture of pharmaceuticals and personal care products on fathead minnows (Pimephales promelas) [J]. Environmental Toxicology and Chemistry, 2014, 33(4): 910-919. doi: 10.1002/etc.2511
|
[46] |
POMATI F, CASTIGLIONI S, ZUCCATO E, et al. Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells [J]. Environmental Science & Technology, 2006, 40(7): 2442-2447.
|
[47] |
LI Z H, LU G H, YANG X F, et al. Single and combined effects of selected pharmaceuticals at sublethal concentrations on multiple biomarkers in Carassius auratus [J]. Ecotoxicology, 2012, 21(2): 353-361. doi: 10.1007/s10646-011-0796-9
|
[48] |
DETTBARN W D, MILATOVIC D, GUPTA R C. Oxidative stress in anticholinesterase-induced excitotoxicity[M]//Toxicology of Organophosphate & Carbamate Compounds. Amsterdam: Elsevier, 2006: 511-532.
|
[49] |
张群芳, 尹盼, 李英文, 等. 多种环境雌激素低剂量联合处理诱导斑马鱼精子发生障碍 [J]. 重庆师范大学学报(自然科学版), 2016, 33(3): 20-26.
ZHANG Q F, YIN P, LI Y W, et al. A variety of environmental estrogens lower dose combination treatment induces spermatogenesis dysplasia in zebrafish(Danio rerio) [J]. Journal of Chongqing Normal University (Natural Science), 2016, 33(3): 20-26(in Chinese).
|
[50] |
宋存义, 汪翠萍, 李晖. 污水处理中几种去除药物及个人护理用品方法的机理及效果比较 [J]. 环境工程学报, 2009, 3(11): 1921-1930.
SONG C Y, WANG C P, LI H. Mechanism and efficiency comparison between techniques of removing pharmaceuticals and personal care products in wastewater treatment [J]. Chinese Journal of Environmental Engineering, 2009, 3(11): 1921-1930(in Chinese).
|
[51] |
贾瑷, 胡建英, 孙建仙, 等. 环境中的医药品与个人护理品[J]. 化学进展, 2009, 21(增刊1): 389-399.
JIA A, HU J Y, SUN J X, et al. Pharmaceuticals and personal care products (PPCPs) in environment[J]. Progress in Chemistry, 2009, 21(Sup 1): 389-399(in Chinese).
|
[52] |
刘昱迪, 张旭. PPCPs在污水处理系统中去除方法的研究进展 [J]. 科技创新与应用, 2016(11): 58-59.
LIU Y D, ZHANG X. Research on removal methods of PPCPs in wastewater treatment system [J]. Technology Innovation and Application, 2016(11): 58-59(in Chinese).
|
[53] |
SUÁREZ S, CARBALLA M, OMIL F, et al. How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? [J]. Reviews in Environmental Science and Bio/Technology, 2008, 7(2): 125-138. doi: 10.1007/s11157-008-9130-2
|
[54] |
CARBALLA M, OMIL F, LEMA J M, et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant [J]. Water Research, 2004, 38(12): 2918-2926. doi: 10.1016/j.watres.2004.03.029
|
[55] |
王建龙. 废水中药品及个人护理用品(PPCPs)的去除技术研究进展 [J]. 四川师范大学学报(自然科学版), 2020, 43(2): 143-172,140.
WANG J L. Removal of pharmaceuticals and personal care products(PPCPs) from wastewater: A review [J]. Journal of Sichuan Normal University (Natural Science), 2020, 43(2): 143-172,140(in Chinese).
|
[56] |
SNYDER S A, ADHAM S, REDDING A M, et al. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals [J]. Desalination, 2007, 202(1/2/3): 156-181.
|
[57] |
乔学兵, 由佩骅. 城市污水中药品和个人护理用品(PPCPs)削减技术研究 [J]. 能源与环境, 2012(2): 48-50. doi: 10.3969/j.issn.1672-9064.2012.02.023
QIAO X B, YOU P H. Research on reduction technology of medicines and personal care products (PPCPs) in urban sewage [J]. Energy and Environment, 2012(2): 48-50(in Chinese). doi: 10.3969/j.issn.1672-9064.2012.02.023
|
[58] |
WANG J L, CHEN L J, SHI H C, et al. Microbial degradation of phthalic acid esters under anaerobic digestion of sludge [J]. Chemosphere, 2000, 41(8): 1245-1248. doi: 10.1016/S0045-6535(99)00552-4
|
[59] |
HAMA AZIZ K H, MIESSNER H, MUELLER S, et al. Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma [J]. Chemical Engineering Journal, 2017, 313: 1033-1041. doi: 10.1016/j.cej.2016.10.137
|
[60] |
ESPLUGAS S, BILA D M, KRAUSE L G T, et al. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents [J]. Journal of Hazardous Materials, 2007, 149(3): 631-642. doi: 10.1016/j.jhazmat.2007.07.073
|
[61] |
MOHAPATRA D P, BRAR S K, TYAGI R D, et al. A comparative study of ultrasonication, Fenton's oxidation and Ferro-sonication treatment for degradation of carbamazepine from wastewater and toxicity test by Yeast Estrogen Screen (YES) assay [J]. Science of the Total Environment, 2013, 447: 280-285. doi: 10.1016/j.scitotenv.2012.12.072
|
[62] |
KANG Y W, HWANG K Y. Effects of reaction conditions on the oxidation efficiency in the Fenton process [J]. Water Research, 2000, 34(10): 2786-2790. doi: 10.1016/S0043-1354(99)00388-7
|
[63] |
牛军峰, 余刚, 刘希涛. 水相中POPs光化学降解研究进展 [J]. 化学进展, 2005, 17(5): 938-948. doi: 10.3321/j.issn:1005-281X.2005.05.024
NIU J F, YU G, LIU X T. Advances in photolysis of persistent organic pollutants in water [J]. Progress in Chemistry, 2005, 17(5): 938-948(in Chinese). doi: 10.3321/j.issn:1005-281X.2005.05.024
|
[64] |
CHATZITAKIS A, BERBERIDOU C, PASPALTSIS I, et al. Photocatalytic degradation and drug activity reduction of Chloramphenicol [J]. Water Research, 2008, 42(1/2): 386-394.
|
[65] |
冯雪梅, 卫新来, 陈俊, 等. 高级氧化技术在废水处理中的应用进展 [J]. 应用化工, 2020, 49(4): 993-996,1001. doi: 10.3969/j.issn.1671-3206.2020.04.042
FENG X M, WEI X L, CHEN J, et al. Progress in the application of advanced oxidation technology in wastewater treatment [J]. Applied Chemical Industry, 2020, 49(4): 993-996,1001(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.04.042
|
[66] |
STAHL G E. Opusculum chymico physico medicum[M]. Nuremberg: Halae Magdeburgiae, 2011.
|
[67] |
夏庆余, 方熠, 吴挡兰, 等. 绿色氧化剂高铁酸盐的制备与应用 [J]. 化工进展, 2005, 24(3): 245-250. doi: 10.3321/j.issn:1000-6613.2005.03.005
XIA Q Y, FANG Y, WU D L, et al. Preparation and application of green oxidant ferrate [J]. Chemical Industry and Engineering Progress, 2005, 24(3): 245-250(in Chinese). doi: 10.3321/j.issn:1000-6613.2005.03.005
|
[68] |
XU G R, ZHANG Y P, LI G B. Degradation of azo dye active brilliant red X-3B by composite ferrate solution [J]. Journal of Hazardous Materials, 2009, 161(2/3): 1299-1305.
|
[69] |
LI Y N, DUAN Z H, WANG Y F, et al. Preliminary treatment of phenanthrene in coking wastewater by a combined potassium ferrate and Fenton process [J]. International Journal of Environmental Science and Technology, 2019, 16(8): 4483-4492. doi: 10.1007/s13762-018-2037-8
|
[70] |
WOOD R H. The heat, free energy and entropy of the ferrate(VI) ion [J]. Journal of the American Chemical Society, 1958, 80(9): 2038-2041. doi: 10.1021/ja01542a002
|
[71] |
YATES B J, DARLINGTON R, ZBORIL R, et al. High-valent iron-based oxidants to treat perfluorooctanesulfonate and perfluorooctanoic acid in water [J]. Environmental Chemistry Letters, 2014, 12(3): 413-417. doi: 10.1007/s10311-014-0463-5
|
[72] |
陈国猛. 紫外/高铁酸盐处理有机磷农药废水的实验研究[D]. 武汉: 华中科技大学, 2012.
CHEN G M. Study on the treatment of organophosphorus pesticide wastewater by UV/ferrate[D]. Wuhan: Huazhong University of Science and Technology, 2012(in Chinese).
|
[73] |
杨文焕, 王超慧, 高乃云, 等. 环丙沙星在水中的高级氧化去除方法研究进展 [J]. 应用化工, 2016, 45(10): 1959-1964,1968.
YANG W H, WANG C H, GAO N Y, et al. Research progress of the oxidation removal methods of ciprofloxacin in water [J]. Applied Chemical Industry, 2016, 45(10): 1959-1964,1968(in Chinese).
|
[74] |
关鹤达. 高铁酸钾与磁性吸附材料强化磁絮凝处理污水厂二级出水研究[D]. 长春: 吉林大学, 2020.
GUAN H D. Potassium ferrate and magnetic absorbent material enhanced magnetic flocculation treatment of secondary effluent from wastewater plant[D]. Changchun: Jilin University, 2020(in Chinese).
|
[75] |
de LUCA S J, CANTELLI M, de LUCA M A. Ferrate vs traditional coagulants in the treatment of combined industrial wastes [J]. Water Science and Technology, 1992, 26(9/10/11): 2077-2080.
|
[76] |
宋亚瑞, 马健伟, 宋华. Fe(Ⅳ)的合成及其稳定性研究 [J]. 化学通报, 2006, 69(11): 849-852. doi: 10.3969/j.issn.0441-3776.2006.11.016
SONG Y R, MA J W, SONG H. Synthesis and stability of Fe(Ⅳ) solution [J]. Chemistry, 2006, 69(11): 849-852(in Chinese). doi: 10.3969/j.issn.0441-3776.2006.11.016
|
[77] |
JIANG J Q, LLOYD B. Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment [J]. Water Research, 2002, 36(6): 1397-1408. doi: 10.1016/S0043-1354(01)00358-X
|
[78] |
GOODWILL J E, JIANG Y J, RECKHOW D A, et al. Characterization of particles from ferrate preoxidation [J]. Environmental Science & Technology, 2015, 49(8): 4955-4962.
|
[79] |
王东升, 李文涛, 杨晓芳, 等. 高铁酸盐: 一种绿色的多功能水处理剂 [J]. 应用化学, 2016, 33(11): 1221-1233. doi: 10.11944/j.issn.1000-0518.2016.11.160337
WANG D S, LI W T, YANG X F, et al. Ferrates: green oxidants and coagulants in water treatment [J]. Chinese Journal of Applied Chemistry, 2016, 33(11): 1221-1233(in Chinese). doi: 10.11944/j.issn.1000-0518.2016.11.160337
|
[80] |
JOHNSON M D, SHARMA K D. Kinetics and mechanism of the reduction of ferrate by one-electron reductants [J]. Inorganica Chimica Acta, 1999, 293(2): 229-233. doi: 10.1016/S0020-1693(99)00214-5
|
[81] |
SCHREYER J M, OCKERMAN L T. Stability of ferrate(VI) ion in aqueous solution [J]. Analytical Chemistry, 1951, 23(9): 1312-1314. doi: 10.1021/ac60057a028
|
[82] |
王立立, 曲久辉, 王忠秋, 等. 高铁稳定性及其影响因素的研究[J]. 东北电力学院学报, 1999, 19(1): 6-10[82] 王立立, 曲久辉. 高铁稳定性及其影响因素的研究[J]. 东北电力学院学报, 1999, 19(1): 6-10.
WANG L L, QU J H, WANG Z Q, et al. Stability and effect factors study of ferrate, iron(Ⅵ)[J]. Journal of Northeast China Institute of Electric Power Engineering, 1999, 19(1): 6-10(in Chinese) Wang L L, Qu J H. Stability and effect factors study of ferrate, iron(Ⅵ) [J]. Journal of Northeast China Institute of Electric Power Engineering, 1999, 19(1): 6-10(in Chinese).
|
[83] |
WAGNER W F, GUMP J R, HART E N. Factors affecting stability of aqueous potassium ferrate(Ⅵ) solutions [J]. Analytical Chemistry, 1952, 24(9): 1497-1498. doi: 10.1021/ac60069a037
|
[84] |
贾汉东, 鲍改玲. 过渡金属离子对高铁酸盐溶液稳定性的影响 [J]. 电池, 2004, 34(6): 430-431. doi: 10.3969/j.issn.1001-1579.2004.06.016
JIA H D, BAO G L. The effect of transition metal ions on the stability of ferrate in solution [J]. Battery Bimonthly, 2004, 34(6): 430-431(in Chinese). doi: 10.3969/j.issn.1001-1579.2004.06.016
|
[85] |
傅金祥, 合姣姣, 张祥楠, 等. 高铁酸盐的稳定性研究 [J]. 沈阳建筑大学学报(自然科学版), 2011, 27(6): 1158-1162.
FU J X, HE J J, ZHANG X N, et al. Study on stability of ferrate(Ⅵ) [J]. Journal of Shenyang Jianzhu University (Natural Science), 2011, 27(6): 1158-1162(in Chinese).
|
[86] |
KAMACHI T, KOUNO T, YOSHIZAWA K. Participation of multioxidants in the pH dependence of the reactivity of ferrate(Ⅵ) [J]. The Journal of Organic Chemistry, 2005, 70(11): 4380-4388. doi: 10.1021/jo050091o
|
[87] |
李通, 刘国光, 刘海津, 等. 高铁酸盐氧化降解环丙沙星的实验研究 [J]. 环境科学与技术, 2014, 37(2): 123-128.
LI T, LIU G G, LIU H J, et al. Experimental study on oxidation degradation of ciprofloxacin by ferrate(Ⅵ) [J]. Environmental Science & Technology, 2014, 37(2): 123-128(in Chinese).
|
[88] |
WANG H Y, LIU Y B, JIANG J Q. Reaction kinetics and oxidation product formation in the degradation of acetaminophen by ferrate (Ⅵ) [J]. Chemosphere, 2016, 155: 583-590. doi: 10.1016/j.chemosphere.2016.04.088
|
[89] |
周正伟, 张晓峰. 高铁酸盐去除污水处理厂出水中的药物残留物 [J]. 常州大学学报(自然科学版), 2019, 31(4): 52-56,69.
ZHOU Z W, ZHANG X F. Removal of pharmaceutical residues spiked in effluent from wastewater treatment plant by ferrate(Ⅵ) [J]. Journal of Changzhou University (Natural Science Edition), 2019, 31(4): 52-56,69(in Chinese).
|
[90] |
ZHOU Z W, JIANG J Q. Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(Ⅵ) [J]. Chemosphere, 2015, 119: S95-S100. doi: 10.1016/j.chemosphere.2014.04.006
|
[91] |
HUANG J L, WANG Y H, LIU G G, et al. Oxidation of indometacin by ferrate (Ⅵ): Kinetics, degradation pathways, and toxicity assessment [J]. Environmental Science and Pollution Research, 2017, 24(11): 10786-10795. doi: 10.1007/s11356-017-8750-x
|
[92] |
王涛, 彭道平, 李云祯, 等. 高铁酸盐(Fe(Ⅵ))氧化去除水中PPCPs的研究进展 [J]. 环境工程, 2016, 34(8): 40-44.
WANG T, PENG D P, LI Y Z, et al. Research progress ON the oxidation removal of ppcps by ferrate(Fe(Ⅵ)) [J]. Environmental Engineering, 2016, 34(8): 40-44(in Chinese).
|
[93] |
韩琦, 董文艺, 王宏杰, 等. 高铁酸盐氧化法降解四溴双酚A及生物毒性控制 [J]. 哈尔滨工业大学学报, 2018, 50(8): 51-55. doi: 10.11918/j.issn.0367-6234.201707148
HAN Q, DONG W Y, WANG H J, et al. Degradation of tetrabromobisphenol A and toxicity controlling by ferrate(Ⅵ) oxidizing technology [J]. Journal of Harbin Institute of Technology, 2018, 50(8): 51-55(in Chinese). doi: 10.11918/j.issn.0367-6234.201707148
|
[94] |
SAILO L, TIWARI D, LEE S M. Degradation of some micro-pollutants from aqueous solutions using ferrate (Ⅵ): Physico-chemical studies [J]. Separation Science and Technology, 2017, 52(17): 2756-2766.
|
[95] |
祖可欣. 高铁酸盐降解水中磺胺氯哒嗪的研究[D]. 吉林: 东北电力大学, 2018.
ZU K X. Study on degradation of sulfachloropyridazine by ferrate(Ⅵ)[D]. Jilin, China: Northeast Dianli University, 2018(in Chinese).
|
[96] |
YANG B, YING G G, ZHAO J L, et al. Oxidation of triclosan by ferrate: Reaction kinetics, products identification and toxicity evaluation [J]. Journal of Hazardous Materials, 2011, 186(1): 227-235. doi: 10.1016/j.jhazmat.2010.10.106
|
[97] |
HAN Q, DONG W Y, WANG H J, et al. Degradation of tetrabromobisphenol A by ferrate(Ⅵ) oxidation: Performance, inorganic and organic products, pathway and toxicity control [J]. Chemosphere, 2018, 198: 92-102. doi: 10.1016/j.chemosphere.2018.01.117
|
[98] |
YANG B, YING G G, CHEN Z F, et al. Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A [J]. Water Research, 2014, 62: 211-219. doi: 10.1016/j.watres.2014.05.056
|
[99] |
SUN X H, FENG M B, DONG S Y, et al. Removal of sulfachloropyridazine by ferrate(Ⅵ): Kinetics, reaction pathways, biodegradation, and toxicity evaluation [J]. Chemical Engineering Journal, 2019, 372: 742-751. doi: 10.1016/j.cej.2019.04.121
|
[100] |
YANG B, KOOKANA R S, WILLIAMS M, et al. Oxidation of ciprofloxacin and enrofloxacin by ferrate(Ⅵ): Products identification, and toxicity evaluation [J]. Journal of Hazardous Materials, 2016, 320: 296-303. doi: 10.1016/j.jhazmat.2016.08.040
|
[101] |
OHTA T, KAMACHI T, SHIOTA Y, et al. A theoretical study of alcohol oxidation by ferrate [J]. The Journal of Organic Chemistry, 2001, 66(12): 4122-4131. doi: 10.1021/jo001193b
|
[102] |
SHARMA V K, O’CONNOR D B, CABELLI D. Oxidation of thiocyanate by iron(Ⅴ) in alkaline medium [J]. Inorganica Chimica Acta, 2004, 357(15): 4587-4591. doi: 10.1016/j.ica.2004.07.001
|
[103] |
DONG H Y, LI Y, WANG S C, et al. Both Fe(Ⅳ) and radicals are active oxidants in the Fe(Ⅱ)/peroxydisulfate process [J]. Environmental Science & Technology Letters, 2020, 7(3): 219-224.
|
[104] |
LI X W, LIU X T, LIN C Y, et al. Catalytic oxidation of contaminants by Fe0 activated peroxymonosulfate process: Fe(Ⅳ) involvement, degradation intermediates and toxicity evaluation [J]. Chemical Engineering Journal, 2020, 382: 123013. doi: 10.1016/j.cej.2019.123013
|
[105] |
SHARMA V K. Oxidation of inorganic contaminants by ferrates (Ⅵ, Ⅴ, and Ⅳ)-kinetics and mechanisms: A review [J]. Journal of Environmental Management, 2011, 92(4): 1051-1073. doi: 10.1016/j.jenvman.2010.11.026
|
[106] |
HUANG Z S, WANG L, LIU Y L, et al. Impact of phosphate on ferrate oxidation of organic compounds: An underestimated oxidant [J]. Environmental Science & Technology, 2018, 52(23): 13897-13907.
|
[107] |
ZHANG J, ZHU L, SHI Z Y, et al. Rapid removal of organic pollutants by activation sulfite with ferrate [J]. Chemosphere, 2017, 186: 576-579. doi: 10.1016/j.chemosphere.2017.07.102
|
[108] |
HUIE R E, NETA P. Chemical behavior of sulfur trioxide(1-) (SO3−) and sulfur pentoxide(1-) (SO5−) radicals in aqueous solutions [J]. The Journal of Physical Chemistry, 1984, 88(23): 5665-5669. doi: 10.1021/j150667a042
|
[109] |
周杰, 王城晨, 朱颖一, 等. 高铁酸盐与过硫酸钠联合降解水中滴滴涕和六六六 [J]. 环境工程学报, 2019, 13(10): 2414-2425. doi: 10.12030/j.cjee.201812107
ZHOU J, WANG C C, ZHU Y Y, et al. Degradation of DDTs and HCHs in aqueous solution by combined K2FeO4 and Na2S2O8 [J]. Chinese Journal of Environmental Engineering, 2019, 13(10): 2414-2425(in Chinese). doi: 10.12030/j.cjee.201812107
|
[110] |
SHAO B B, DONG H Y, SUN B, et al. Role of ferrate(Ⅳ) and ferrate(Ⅴ) in activating ferrate(Ⅵ) by calcium sulfite for enhanced oxidation of organic contaminants [J]. Environmental Science & Technology, 2019, 53(2): 894-902.
|
[111] |
OH W D, DONG Z L, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects [J]. Applied Catalysis B:Environmental, 2016, 194: 169-201. doi: 10.1016/j.apcatb.2016.04.003
|
[112] |
ZHOU D N, ZHANG H, CHEN L. Sulfur-replaced Fenton systems: Can sulfate radical substitute hydroxyl radical for advanced oxidation technologies? [J]. Journal of Chemical Technology & Biotechnology, 2015, 90(5): 775-779.
|
[113] |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38. doi: 10.1038/238037a0
|
[114] |
CHENTHAMARAKSHAN C R, RAJESHWAR K, WOLFRUM E J. Heterogeneous photocatalytic reduction of Cr(Ⅵ) in UV-irradiated titania suspensions: Effect of protons, ammonium ions, and other interfacial aspects [J]. Langmuir, 2000, 16(6): 2715-2721.
|
[115] |
YUAN B L, LI X Z, GRAHAM N. Aqueous oxidation of dimethyl phthalate in a Fe(Ⅵ)-TiO2-UV reaction system[J].Water Research, 2008 , 42 (6/7): 1413 - 1420.
|
[116] |
MA Y, ZHANG K J, LI C, et al. Oxidation of sulfonamides In aqueous solution by UV-TiO2-Fe(VI) [J]. BioMed Research International, 2015, 2015: 973942.
|
[117] |
朱丽婷, 张运浩, 陈舒展, 等. K2FeO4协同TiO2光催化降解水中邻苯二甲酸二甲酯 [J]. 环境工程学报, 2019, 13(10): 2369-2376. doi: 10.12030/j.cjee.201811100
ZHU L T, ZHANG Y H, CHEN S Z, et al. Dimethyl phthalate degradation by TiO2-UV photo-catalysis process combined with K2FeO4 [J]. Chinese Journal of Environmental Engineering, 2019, 13(10): 2369-2376(in Chinese). doi: 10.12030/j.cjee.201811100
|
[118] |
LI C, LI X Z. Degradation of endocrine disrupting chemicals in aqueous solution by interaction of photocatalytic oxidation and ferrate (Ⅵ) oxidation [J]. Water Science and Technology, 2007, 55(1/2): 217-223.
|
[119] |
SHARMA V K, GRAHAM N J D, LI X Z, et al. Ferrate(Ⅵ) enhanced photocatalytic oxidation of pollutants in aqueous TiO2 suspensions [J]. Environmental Science and Pollution Research, 2010, 17(2): 453-461. doi: 10.1007/s11356-009-0170-0
|