-
药物和个人护理品(pharmaceuticals and personal care products, PPCPs)是一类新兴污染物,包括各种药物如抗生素、β-受体阻滞剂、抗癫痫药等以及护肤品、化妆品、发胶和染发剂等日常护理品[1]。PPCPs具有生产消费量大、种类繁多、污染范围广且在水环境中具有持久性等特点。近年来,中国已经成为世界上制药原料药最大的生产国和出口国,其消费量也远远高于其他国家[2-3]。药物已知化合物种类超过3000多种,原料药品全世界年产量突破20万t,个人护理品已知化合物种类也达到上千种,全世界年产量超过10万t[4-5]。随着世界各国对水资源安全性关注的增加,PPCPs作为新兴污染物逐渐受到关注。PPCPs在各国水环境中的浓度如表1所示。由表1可知,虽然不同国家或地区因用药习惯、气候和环境等因素导致药物的种类存在差异,但水体中PPCPs的存在浓度大多在ng·L−1到μg·L−1的水平。已有的研究表明,PPCPs在污水处理厂、饮用水及自然水体中均有检出,而且其在水中的含量,受到化合物自身的性质、环境条件及污水处理技术等因素的影响[6]。
高铁酸盐对生活污水中药品和个人护理品(PPCPs)的降解研究进展
Degradation of PPCPs in domestic sewage by ferrate
-
摘要: 药品和个人护理品(PPCPs)类新兴污染物在水环境中被频繁检出,其种类繁多,许多组分具有较强的生物活性。虽然PPCPs在环境中大多以痕量浓度存在,但因其生物累积性和潜在的生态风险性,近年来受到高度关注。文中阐述了高铁酸盐对污水环境中PPCPs的降解,并介绍了高铁酸盐与其他技术联用降解PPCPs的研究进展及高铁酸盐的发展前景,为其实际应用于污水中PPCPs的降解去除提供思路。Abstract: Pharmaceutical and personal care products (PPCPs) as a kind of emerging of pollutants are frequently detected in water environment. They are varied and many components have strong biological activity. Although PPCPs mostly exist in trace concentrations in the environment, but due to its biological accumulation and potential ecological risk, they have been highlighted in recent years. The degradation of PPCPs with ferrate in water environment was described in this study, and the combination of ferrate and other technical in the degradation of PPCPs and the development prospects of ferrate was also introduced. It provides an idea for its practical application in the degradation of PPCPs in sewage.
-
表 1 PPCPs在不同国家和地区的分布及浓度
Table 1. Distribution and concentration of PPCPs in different countries and regions
PPCPs类别或名称
PPCPs主要分布地区
Main distribution region受纳水体
Receiving water浓度/(ng·L−1)*
Concentration*文献
Reference氯贝酸 德国美因河畔 河流和溪流 66—550 [7] 吉非罗齐 西班牙塔霍河 河流 296—966 [8] 双氯芬酸 瑞士格莱芬湖/阿巴赫河 河流/湖泊 11—310 [9] 环丙沙星 法国Arc河 河流 n.d.—9660 [10] 壬基酚 日本冲绳和石垣岛 河流 n.d.—170 [11] 卡马西平
卡马西平法国Arc河 河流 330—6720 [10] 西班牙Llobregat河 河流 80—3090 [12] 布洛芬
布洛芬葡萄牙利马河 河流 40—723 [13] 葡萄牙杜罗河 河流 n.d.—232 [13] 氧氟沙星 中国渤海湾 海洋 n.d.—5100 [14] 土霉素 中国渤海湾 海洋 n.d.—270 [14] 磺胺二甲嘧啶 中国珠江流域 河流 9.47—1080 [15] 对羟基苯甲酸乙酯 印度Tamiraparani河 河流 88.9—147 [16] 三氯生 美国Cibolo Creek河 溪流 104—431 [17] *n.d.: 未检出 表 2 常见的PPCPs降解去除技术
Table 2. Common removal and degradation technologies of PPCPs
处理方法
Approach处理技术
Technology原理
Principle优点
Advantage缺点
Disadvantage物理法 吸附法 污泥的吸附作用去除水中PPCPs,包括亲脂性吸附和静电引力作用[53] 高效、系统简单、无有毒中间产物形成 对于Kd值很低的PPCPs效果较差;吸附作用没有改变其分子结构,无法从根本上去除PPCPs[7, 50, 54] 膜分离法 采用多孔或无孔膜截留水中污染物以达到净水效果[55] 操作简单,污染物去除率高,占用空间小[56] 微滤和超滤几乎不能截留污染物[56] 混凝沉淀法 在混凝剂的作用下,废水中的胶体和细微悬浮物凝聚成絮凝体,以分离除去污染物 可去除水中分子量较大、非极性的PPCPs 去除效率不高 生物法 好氧生物降解法 活性污泥法是一种典型的好氧生物处理法,利用污泥的生物凝聚、吸附、氧化等过程,去除水中的PPCPs 对大部分PPCPs污染物去除率为30%—75%,镇痛药去除效果最佳[57] 对雌激素酮和碘普胺等几乎没有去除效果 厌氧生物降解法 利用厌氧微生物以降解废水中的有机污染物 无需曝气供氧,处理成本低;对部分微量有毒有机物可有效去除 对部分PPCPs无法降解,如卡马西平[58] 人工湿地技术 吸附、降解和植物作用 PPCPs可以通过植物的根、茎、叶进行吸附、吸收、富集和降解;植物还可以通过促进微生物降解作用间接去除PPCPs[55] 占地面积大,易受病虫害影响,水力和生物复杂性加大对其处理机制、工艺动力学和影响因素的认识 化学法 臭氧氧化法 利用臭氧高氧化电位的特点,可与污染物直接发生反应,并产生一系列自由基(酸性条件),或产生羟基自由基(·OH)攻击污染物(碱性条件)[59] 反应无选择性,反应速度较快[52] 臭氧在水中溶解性不高,臭氧氧化生成的产物或副产物具有毒性[60] 芬顿氧化法 通过Fe2+和H2O2发生反应产生·OH和·O2H,在氧化和凝结的两个阶段中去除有机污染物[61] 操作简单,处理效果好,成本较低 对H2O2利用率不高;在中性pH条件下,不易生成·OH;存在铁离子的后续去除问题[62] 光催化降解法 分子间的化学反应、化合物的异构化或化学键的断裂、重排等途径产生新的化合物[63] 能同时吸附反应物和有效光子,氧化能力强;对部分PPCPs有很好的去除效果 光量子效率低、反应速率慢[64] 电化学氧化法 利用有催化活性的电极反应直接或者间接产生·OH来降解难生化处理的有机污染物[65] 效率高、可控性好、操作条件温和等。 需要加入电解质增加导电性,会形成降解中间产物,电极易失活等[55] 氧化剂
Oxidant酸性条件/V
Acidic conditions碱性条件/V
Alkaline conditions高铁酸钾 2.20 0.72 高锰酸钾 1.51 0.55 过氧化氢 1.77 1.24 重铬酸钾 1.33 −0.13 次氯酸 1.49 0.52 臭氧 2.07 1.24 氯 1.36 — 氟 2.87 — Fenton试剂 2.80 — 二氧化氯 0.954 — 表 4 Fe(Ⅵ)与PPCPs的反应机制及中间产物
Table 4. Reaction mechanism and intermediate products of PPCPs by Fe(Ⅵ)
PPCPs 反应机理
Reaction mechanism中间产物
Intermediate products参考文献
Reference四溴双酚A 高铁酸盐中的O—H键与TBBPA中的Br以氢键形式结合,生成HBr,TBBPA脱溴后生成双酚A,最后被·OH氧化为邻苯二甲酸。主要反应过程包括加成反应、β位断裂反应和去质子化反应 2,6-二溴苯酚,邻苯二甲酸,双酚A,2,6-二溴对异丙烯基苯醌,2,6-二溴-4-(1-甲基乙基)苯酚,2,6-二溴对-(2-叔丁醇)苯酚,三溴双酚A [93] 双酚A 破坏双酚A分子中羟基的OH键,然后破坏—CH3基团使其解离,打开BPA分子中的两个苯基以及矿化作用 苯氧基,二酚和对苯醌 [94] 磺胺氯哒嗪 磺酰胺基团中的NS键断裂,磺酰胺基团挤出SO2,Fe(Ⅵ)自分解产生OH·氧化苯胺基团,形成-NO2基团 对硝基苯酚,氨基氯代哒嗪,对磺胺基苯酚等 [95] 三氯生 通过电子氧化使苯酚环上的醚键断裂并对苯酚环进行氧化,也可能发生偶联反应。$ {\mathrm{H}\mathrm{F}\mathrm{e}\mathrm{O}}_{4}^{-} $ 2,4-二氯苯酚,氯酚,2-氯-5-(2,4-二氯苯氧基)苯-1,4-二醇,5-氯-3-(氯氢醌)苯酚等 [96] 阿米替林 阿米替林的环外双键被氧化为环氧化物后发生水解 二苯并环庚烯酮和3-二甲氨基-丙醛 [21] -
[1] 汪琪, 张梦佳, 陈洪斌. 水环境中药物类PPCPs的赋存及处理技术进展 [J]. 净水技术, 2020, 39(1): 43-51. doi: 10.15890/j.cnki.jsjs.2020.01.009 WANG Q, ZHANG M J, CHEN H B. Review on occurrence and treatment technology of PPCPs in water environment [J]. Water Purification Technology, 2020, 39(1): 43-51(in Chinese). doi: 10.15890/j.cnki.jsjs.2020.01.009
[2] 谢鹏. 微藻对五种典型PPCPs的去除效能及生物质资源的回收[D]. 哈尔滨: 哈尔滨工业大学, 2017. XIE P. Research on degraduation of typical PPCPs and resources productivity by microalgae[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
[3] 缪惟民. 我国已成为世界原料药第一出口国 [J]. 上海包装, 2007(10): 11. doi: 10.19446/j.cnki.1005-9423.2007.10.004 MIAO W M. China's become No. 1 exported country of medicinal materials in the world [J]. Shanghai Packaging, 2007(10): 11(in Chinese). doi: 10.19446/j.cnki.1005-9423.2007.10.004
[4] DAUGHTON C G, TERNES T A. Pharmaceuticals and personal care products in the environment: Agents of subtle change?[J]. Environmental Health Perspectives, 1999, 107(Suppl 6): 907-938. [5] 汤迎, 虢清伟, 洪澄泱, 等. 污水处理厂内PPCPs赋存情况及去除因素分析 [J]. 工业水处理, 2014, 34(2): 1-4,10. doi: 10.3969/j.issn.1005-829X.2014.02.001 TANG Y, GUO Q W, HONG C Y, et al. Occurrence and removing factors of pharmaceuticals and personal care products in sewage treatment plants [J]. Industrial Water Treatment, 2014, 34(2): 1-4,10(in Chinese). doi: 10.3969/j.issn.1005-829X.2014.02.001
[6] LI J N, ZHOU Q Z, CAMPOS L C. Removal of selected emerging PPCP compounds using greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland [J]. Water Research, 2017, 126: 252-261. doi: 10.1016/j.watres.2017.09.002 [7] TERNES T A. Occurrence of drugs in German sewage treatment plants and rivers [J]. Water Research, 1998, 32(11): 3245-3260. doi: 10.1016/S0043-1354(98)00099-2 [8] VALCÁRCEL Y, ALONSO S G, RODRÍGUEZ-GIL J L, et al. Seasonal variation of pharmaceutically active compounds in surface (Tagus River) and tap water (Central Spain) [J]. Environmental Science and Pollution Research, 2013, 20(3): 1396-1412. doi: 10.1007/s11356-012-1099-2 [9] BUSER H R, POIGER T, MÜLLER M D. Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: Rapid photodegradation in a lake [J]. Environmental Science & Technology, 1998, 32(22): 3449-3456. [10] FEITOSA-FELIZZOLA J, CHIRON S. Occurrence and distribution of selected antibiotics in a small Mediterranean stream (Arc River, Southern France) [J]. Journal of Hydrology, 2009, 364(1/2): 50-57. [11] KAWAHATA H, OHTA H, INOUE M, et al. Endocrine disrupter nonylphenol and bisphenol A contamination in Okinawa and Ishigaki Islands, Japan: Within coral reefs and adjacent river mouths [J]. Chemosphere, 2004, 55(11): 1519-1527. doi: 10.1016/j.chemosphere.2004.01.032 [12] GINEBREDA A, MUÑOZ I, de ALDA M L, et al. Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain) [J]. Environment International, 2010, 36(2): 153-162. doi: 10.1016/j.envint.2009.10.003 [13] PAÍGA P, SANTOS L H M L M, AMORIM C G, et al. Pilot monitoring study of ibuprofen in surface waters of north of Portugal [J]. Environmental Science and Pollution Research, 2013, 20(4): 2410-2420. doi: 10.1007/s11356-012-1128-1 [14] ZOU S C, XU W H, ZHANG R J, et al. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities [J]. Environmental Pollution, 2011, 159(10): 2913-2920. doi: 10.1016/j.envpol.2011.04.037 [15] YANG J F, YING G G, ZHAO J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China [J]. Journal of Environmental Science and Health, Part B, 2011, 46(3): 272-280. doi: 10.1080/03601234.2011.540540 [16] RAMASWAMY B R, SHANMUGAM G, VELU G, et al. GC-MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers [J]. Journal of Hazardous Materials, 2011, 186(2/3): 1586-1593. [17] MORRALL D, MCAVOY D, SCHATOWITZ B, et al. A field study of triclosan loss rates in river water (Cibolo Creek, TX) [J]. Chemosphere, 2004, 54(5): 653-660. doi: 10.1016/j.chemosphere.2003.08.002 [18] PAÍGA P, SANTOS L H M L M, DELERUE-MATOS C. Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC-MS/MS [J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 135: 75-86. doi: 10.1016/j.jpba.2016.12.013 [19] CHEE-SANFORD J C, MACKIE R I, KOIKE S, et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste [J]. Journal of Environmental Quality, 2009, 38(3): 1086-1108. doi: 10.2134/jeq2008.0128 [20] ELMUND G K, MORRISON S M, GRANT D W, et al. Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste [J]. Bulletin of Environmental Contamination and Toxicology, 1971, 6(2): 129-132. doi: 10.1007/BF01540093 [21] 肖梦莹. 高铁酸盐高级氧化法处理典型三环类抗抑郁药废水研究[D]. 武汉: 华中科技大学, 2014. XIAO M Y. Experimental study on ferrate(Ⅵ) advanced oxidation process dispose wastewater containing typical tricyclic antidepressant[D]. Wuhan: Huazhong University of Science and Technology, 2014(in Chinese).
[22] LORENZEN A, HENDEL J G, CONN K L, et al. Survey of hormone activities in municipal biosolids and animal manures [J]. Environmental Toxicology, 2004, 19(3): 216-225. doi: 10.1002/tox.20014 [23] MOJIRI A, ZHOU J L, ROBINSON B, et al. Pesticides in aquatic environments and their removal by adsorption methods [J]. Chemosphere, 2020, 253: 126646. doi: 10.1016/j.chemosphere.2020.126646 [24] . 农业部发布《关于发布〈饲料药物添加剂使用规范〉的通知》[J]. 中国兽药杂志, 2001, 35(4): 40-50. The ministry of agriculture of the People's Republic of China, The Ministry of Agriculture issued the "Notice on Issuing the "Regulations for the Use of Feed Drug Additives"" [J]. Chinese Journal of Veterinary Drug, 2001, 35(4): 40-50(in Chinese).
[25] 蔡辉益, 刘国华. 饲料药物添加剂应用现状及未来展望 [J]. 中国家禽, 2006, 28(24): 1-4. doi: 10.3969/j.issn.1004-6364.2006.24.002 CAI H Y, LIU G H. Application status and future prospects of feed drug additives [J]. China Poultry, 2006, 28(24): 1-4(in Chinese). doi: 10.3969/j.issn.1004-6364.2006.24.002
[26] ARCHER E, PETRIE B, KASPRZYK-HORDERN B, et al. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters [J]. Chemosphere, 2017, 174: 437-446. doi: 10.1016/j.chemosphere.2017.01.101 [27] KASPRZYK-HORDERN B, DINSDALE R M, GUWY A J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters [J]. Water Research, 2009, 43(2): 363-380. doi: 10.1016/j.watres.2008.10.047 [28] CASTIGLIONI S, BAGNATI R, FANELLI R, et al. Removal of pharmaceuticals in sewage treatment plants in Italy [J]. Environmental Science & Technology, 2006, 40(1): 357-363. [29] LAJEUNESSE A, SMYTH S A, BARCLAY K, et al. Distribution of antidepressant residues in wastewater and biosolids following different treatment processes by municipal wastewater treatment plants in Canada [J]. Water Research, 2012, 46(17): 5600-5612. doi: 10.1016/j.watres.2012.07.042 [30] METCALFE C D, CHU S G, JUDT C, et al. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed [J]. Environmental Toxicology and Chemistry, 2010, 29(1): 79-89. doi: 10.1002/etc.27 [31] 赵高峰, 杨林, 周怀东, 等. 北京某污水处理厂出水中药物和个人护理品的污染现状[J]. 中国环境监测, 2011, 27(增刊1): 63-67. ZHAO G F, YANG L, ZHOU H D, et al. Pollution status of pharmaceuticals and personal care productions in a certain sewage plant in Beijing[J]. Environmental Monitoring in China, 2011, 27(Sup 1): 63-67(in Chinese).
[32] 王剑斌. 药品和个人护理用品类污染物(PPCPs)在北江流域的浓度分布特性初探 [J]. 广州环境科学, 2019, 34(1): 39-43. WANG J B. A preliminary study on the concentration distribution characteristics of pharmaceutical and personal care product pollutants (PPCPs) in Beijiang River Basin [J]. Guangzhou Environmental Science, 2019, 34(1): 39-43(in Chinese).
[33] 秦秦, 宋科, 孙丽娟, 等. 药品和个人护理品(PPCPs)在土壤中的迁移转化和毒性效应研究进展 [J]. 生态环境学报, 2019, 28(5): 1046-1054. doi: 10.16258/j.cnki.1674-5906.2019.05.023 QIN Q, SONG K, SUN L J, et al. Transference-transformation and toxicological effect of pharmaceuticals and personal care products in soils [J]. Ecology and Environmental Sciences, 2019, 28(5): 1046-1054(in Chinese). doi: 10.16258/j.cnki.1674-5906.2019.05.023
[34] FORAN C M, BENNETT E R, BENSON W H. Developmental evaluation of a potential non-steroidal estrogen: Triclosan [J]. Marine Environmental Research, 2000, 50(1/2/3/4/5): 153-156. [35] SCOTT A P, KATSIADAKI I, KIRBY M F, et al. Relationship between sex steroid and vitellogenin concentrations in flounder (Platichthys flesus) sampled from an estuary contaminated with estrogenic endocrine-disrupting compounds[J]. Environmental Health Perspectives, 2006, 114(Suppl 1): 27-31. [36] ROBERTS R A, LASKIN D L, SMITH C V, et al. Nitrative and oxidative stress in toxicology and disease [J]. Toxicological Sciences, 2009, 112(1): 4-16. doi: 10.1093/toxsci/kfp179 [37] 周程, 吴南翔, 范宏亮. 药物及个人护理品对鱼类毒性的研究进展 [J]. 环境与职业医学, 2017, 34(12): 1123-1129. ZHOU C, WU N X, FAN H L. Research advance on toxicity of pharmaceuticals and personal care products on fish [J]. Journal of Environmental & Occupational Medicine, 2017, 34(12): 1123-1129(in Chinese).
[38] BARTOSKOVA M, DOBSIKOVA R, STANCOVA V, et al. Evaluation of ibuprofen toxicity for zebrafish (Danio rerio) targeting on selected biomarkers of oxidative stress[J]. Neuro Endocrinology Letters, 2013, 34(Suppl 2): 102-108. [39] 梁惜梅. 诺氟沙星和三氯生对剑尾鱼的毒性效应[D]. 广州: 暨南大学, 2010. LIANG X M. Toxicity of norfloxacin and triclosan to Xiphophorus helleri (swordtail fish)[D]. Guangzhou: Jinan University, 2010(in Chinese).
[40] ROOKLIDGE S J. Environmental antimicrobial contamination from terraccumulation and diffuse pollution pathways [J]. Science of the Total Environment, 2004, 325(1/2/3): 1-13. [41] 程晋鹏, 张合喜, 朱晓玲, 等. 双酚A对乳腺癌MCF-7细胞的增殖作用及对其癌基因EphA2和c-Myc的mRNA表达水平的影响 [J]. 环境与职业医学, 2006, 23(5): 369-372. doi: 10.3969/j.issn.1006-3617.2006.05.001 CHENG J P, ZHANG H X, ZHU X L, et al. The influence of bisphenol A on cell proliferation and mRNA expression of oncogene EphA2 & c-myc in MCF-7 breast cancer cells [J]. Journal of Environmental & Occupational Medicine, 2006, 23(5): 369-372(in Chinese). doi: 10.3969/j.issn.1006-3617.2006.05.001
[42] ADOLFSSON-ERICI M, PETTERSSON M, PARKKONEN J, et al. Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden [J]. Chemosphere, 2002, 46(9/10): 1485-1489. [43] 王朋华, 袁涛, 谭佑铭. 水环境药物污染对水生物和人体健康的影响 [J]. 环境与健康杂志, 2008, 25(2): 172-174. doi: 10.3969/j.issn.1001-5914.2008.02.033 WANG P H, YUAN T, TAN Y M. Effects of pharmaceuticals pollution in the aquatic environment on aquatic organism and human health [J]. Journal of Environment and Health, 2008, 25(2): 172-174(in Chinese). doi: 10.3969/j.issn.1001-5914.2008.02.033
[44] KINNEY C A, FURLONG E T, ZAUGG S D, et al. Survey of organic wastewater contaminants in biosolids destined for land application [J]. Environmental Science & Technology, 2006, 40(23): 7207-7215. [45] ZENOBIO J E, SANCHEZ B C, ARCHULETA L C, et al. Effects of triclocarban, N, N-diethyl-meta-toluamide, and a mixture of pharmaceuticals and personal care products on fathead minnows (Pimephales promelas) [J]. Environmental Toxicology and Chemistry, 2014, 33(4): 910-919. doi: 10.1002/etc.2511 [46] POMATI F, CASTIGLIONI S, ZUCCATO E, et al. Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells [J]. Environmental Science & Technology, 2006, 40(7): 2442-2447. [47] LI Z H, LU G H, YANG X F, et al. Single and combined effects of selected pharmaceuticals at sublethal concentrations on multiple biomarkers in Carassius auratus [J]. Ecotoxicology, 2012, 21(2): 353-361. doi: 10.1007/s10646-011-0796-9 [48] DETTBARN W D, MILATOVIC D, GUPTA R C. Oxidative stress in anticholinesterase-induced excitotoxicity[M]//Toxicology of Organophosphate & Carbamate Compounds. Amsterdam: Elsevier, 2006: 511-532. [49] 张群芳, 尹盼, 李英文, 等. 多种环境雌激素低剂量联合处理诱导斑马鱼精子发生障碍 [J]. 重庆师范大学学报(自然科学版), 2016, 33(3): 20-26. ZHANG Q F, YIN P, LI Y W, et al. A variety of environmental estrogens lower dose combination treatment induces spermatogenesis dysplasia in zebrafish(Danio rerio) [J]. Journal of Chongqing Normal University (Natural Science), 2016, 33(3): 20-26(in Chinese).
[50] 宋存义, 汪翠萍, 李晖. 污水处理中几种去除药物及个人护理用品方法的机理及效果比较 [J]. 环境工程学报, 2009, 3(11): 1921-1930. SONG C Y, WANG C P, LI H. Mechanism and efficiency comparison between techniques of removing pharmaceuticals and personal care products in wastewater treatment [J]. Chinese Journal of Environmental Engineering, 2009, 3(11): 1921-1930(in Chinese).
[51] 贾瑷, 胡建英, 孙建仙, 等. 环境中的医药品与个人护理品[J]. 化学进展, 2009, 21(增刊1): 389-399. JIA A, HU J Y, SUN J X, et al. Pharmaceuticals and personal care products (PPCPs) in environment[J]. Progress in Chemistry, 2009, 21(Sup 1): 389-399(in Chinese).
[52] 刘昱迪, 张旭. PPCPs在污水处理系统中去除方法的研究进展 [J]. 科技创新与应用, 2016(11): 58-59. LIU Y D, ZHANG X. Research on removal methods of PPCPs in wastewater treatment system [J]. Technology Innovation and Application, 2016(11): 58-59(in Chinese).
[53] SUÁREZ S, CARBALLA M, OMIL F, et al. How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? [J]. Reviews in Environmental Science and Bio/Technology, 2008, 7(2): 125-138. doi: 10.1007/s11157-008-9130-2 [54] CARBALLA M, OMIL F, LEMA J M, et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant [J]. Water Research, 2004, 38(12): 2918-2926. doi: 10.1016/j.watres.2004.03.029 [55] 王建龙. 废水中药品及个人护理用品(PPCPs)的去除技术研究进展 [J]. 四川师范大学学报(自然科学版), 2020, 43(2): 143-172,140. WANG J L. Removal of pharmaceuticals and personal care products(PPCPs) from wastewater: A review [J]. Journal of Sichuan Normal University (Natural Science), 2020, 43(2): 143-172,140(in Chinese).
[56] SNYDER S A, ADHAM S, REDDING A M, et al. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals [J]. Desalination, 2007, 202(1/2/3): 156-181. [57] 乔学兵, 由佩骅. 城市污水中药品和个人护理用品(PPCPs)削减技术研究 [J]. 能源与环境, 2012(2): 48-50. doi: 10.3969/j.issn.1672-9064.2012.02.023 QIAO X B, YOU P H. Research on reduction technology of medicines and personal care products (PPCPs) in urban sewage [J]. Energy and Environment, 2012(2): 48-50(in Chinese). doi: 10.3969/j.issn.1672-9064.2012.02.023
[58] WANG J L, CHEN L J, SHI H C, et al. Microbial degradation of phthalic acid esters under anaerobic digestion of sludge [J]. Chemosphere, 2000, 41(8): 1245-1248. doi: 10.1016/S0045-6535(99)00552-4 [59] HAMA AZIZ K H, MIESSNER H, MUELLER S, et al. Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma [J]. Chemical Engineering Journal, 2017, 313: 1033-1041. doi: 10.1016/j.cej.2016.10.137 [60] ESPLUGAS S, BILA D M, KRAUSE L G T, et al. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents [J]. Journal of Hazardous Materials, 2007, 149(3): 631-642. doi: 10.1016/j.jhazmat.2007.07.073 [61] MOHAPATRA D P, BRAR S K, TYAGI R D, et al. A comparative study of ultrasonication, Fenton's oxidation and Ferro-sonication treatment for degradation of carbamazepine from wastewater and toxicity test by Yeast Estrogen Screen (YES) assay [J]. Science of the Total Environment, 2013, 447: 280-285. doi: 10.1016/j.scitotenv.2012.12.072 [62] KANG Y W, HWANG K Y. Effects of reaction conditions on the oxidation efficiency in the Fenton process [J]. Water Research, 2000, 34(10): 2786-2790. doi: 10.1016/S0043-1354(99)00388-7 [63] 牛军峰, 余刚, 刘希涛. 水相中POPs光化学降解研究进展 [J]. 化学进展, 2005, 17(5): 938-948. doi: 10.3321/j.issn:1005-281X.2005.05.024 NIU J F, YU G, LIU X T. Advances in photolysis of persistent organic pollutants in water [J]. Progress in Chemistry, 2005, 17(5): 938-948(in Chinese). doi: 10.3321/j.issn:1005-281X.2005.05.024
[64] CHATZITAKIS A, BERBERIDOU C, PASPALTSIS I, et al. Photocatalytic degradation and drug activity reduction of Chloramphenicol [J]. Water Research, 2008, 42(1/2): 386-394. [65] 冯雪梅, 卫新来, 陈俊, 等. 高级氧化技术在废水处理中的应用进展 [J]. 应用化工, 2020, 49(4): 993-996,1001. doi: 10.3969/j.issn.1671-3206.2020.04.042 FENG X M, WEI X L, CHEN J, et al. Progress in the application of advanced oxidation technology in wastewater treatment [J]. Applied Chemical Industry, 2020, 49(4): 993-996,1001(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.04.042
[66] STAHL G E. Opusculum chymico physico medicum[M]. Nuremberg: Halae Magdeburgiae, 2011. [67] 夏庆余, 方熠, 吴挡兰, 等. 绿色氧化剂高铁酸盐的制备与应用 [J]. 化工进展, 2005, 24(3): 245-250. doi: 10.3321/j.issn:1000-6613.2005.03.005 XIA Q Y, FANG Y, WU D L, et al. Preparation and application of green oxidant ferrate [J]. Chemical Industry and Engineering Progress, 2005, 24(3): 245-250(in Chinese). doi: 10.3321/j.issn:1000-6613.2005.03.005
[68] XU G R, ZHANG Y P, LI G B. Degradation of azo dye active brilliant red X-3B by composite ferrate solution [J]. Journal of Hazardous Materials, 2009, 161(2/3): 1299-1305. [69] LI Y N, DUAN Z H, WANG Y F, et al. Preliminary treatment of phenanthrene in coking wastewater by a combined potassium ferrate and Fenton process [J]. International Journal of Environmental Science and Technology, 2019, 16(8): 4483-4492. doi: 10.1007/s13762-018-2037-8 [70] WOOD R H. The heat, free energy and entropy of the ferrate(VI) ion [J]. Journal of the American Chemical Society, 1958, 80(9): 2038-2041. doi: 10.1021/ja01542a002 [71] YATES B J, DARLINGTON R, ZBORIL R, et al. High-valent iron-based oxidants to treat perfluorooctanesulfonate and perfluorooctanoic acid in water [J]. Environmental Chemistry Letters, 2014, 12(3): 413-417. doi: 10.1007/s10311-014-0463-5 [72] 陈国猛. 紫外/高铁酸盐处理有机磷农药废水的实验研究[D]. 武汉: 华中科技大学, 2012. CHEN G M. Study on the treatment of organophosphorus pesticide wastewater by UV/ferrate[D]. Wuhan: Huazhong University of Science and Technology, 2012(in Chinese).
[73] 杨文焕, 王超慧, 高乃云, 等. 环丙沙星在水中的高级氧化去除方法研究进展 [J]. 应用化工, 2016, 45(10): 1959-1964,1968. YANG W H, WANG C H, GAO N Y, et al. Research progress of the oxidation removal methods of ciprofloxacin in water [J]. Applied Chemical Industry, 2016, 45(10): 1959-1964,1968(in Chinese).
[74] 关鹤达. 高铁酸钾与磁性吸附材料强化磁絮凝处理污水厂二级出水研究[D]. 长春: 吉林大学, 2020. GUAN H D. Potassium ferrate and magnetic absorbent material enhanced magnetic flocculation treatment of secondary effluent from wastewater plant[D]. Changchun: Jilin University, 2020(in Chinese).
[75] de LUCA S J, CANTELLI M, de LUCA M A. Ferrate vs traditional coagulants in the treatment of combined industrial wastes [J]. Water Science and Technology, 1992, 26(9/10/11): 2077-2080. [76] 宋亚瑞, 马健伟, 宋华. Fe(Ⅳ)的合成及其稳定性研究 [J]. 化学通报, 2006, 69(11): 849-852. doi: 10.3969/j.issn.0441-3776.2006.11.016 SONG Y R, MA J W, SONG H. Synthesis and stability of Fe(Ⅳ) solution [J]. Chemistry, 2006, 69(11): 849-852(in Chinese). doi: 10.3969/j.issn.0441-3776.2006.11.016
[77] JIANG J Q, LLOYD B. Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment [J]. Water Research, 2002, 36(6): 1397-1408. doi: 10.1016/S0043-1354(01)00358-X [78] GOODWILL J E, JIANG Y J, RECKHOW D A, et al. Characterization of particles from ferrate preoxidation [J]. Environmental Science & Technology, 2015, 49(8): 4955-4962. [79] 王东升, 李文涛, 杨晓芳, 等. 高铁酸盐: 一种绿色的多功能水处理剂 [J]. 应用化学, 2016, 33(11): 1221-1233. doi: 10.11944/j.issn.1000-0518.2016.11.160337 WANG D S, LI W T, YANG X F, et al. Ferrates: green oxidants and coagulants in water treatment [J]. Chinese Journal of Applied Chemistry, 2016, 33(11): 1221-1233(in Chinese). doi: 10.11944/j.issn.1000-0518.2016.11.160337
[80] JOHNSON M D, SHARMA K D. Kinetics and mechanism of the reduction of ferrate by one-electron reductants [J]. Inorganica Chimica Acta, 1999, 293(2): 229-233. doi: 10.1016/S0020-1693(99)00214-5 [81] SCHREYER J M, OCKERMAN L T. Stability of ferrate(VI) ion in aqueous solution [J]. Analytical Chemistry, 1951, 23(9): 1312-1314. doi: 10.1021/ac60057a028 [82] 王立立, 曲久辉, 王忠秋, 等. 高铁稳定性及其影响因素的研究[J]. 东北电力学院学报, 1999, 19(1): 6-10[82] 王立立, 曲久辉. 高铁稳定性及其影响因素的研究[J]. 东北电力学院学报, 1999, 19(1): 6-10. WANG L L, QU J H, WANG Z Q, et al. Stability and effect factors study of ferrate, iron(Ⅵ)[J]. Journal of Northeast China Institute of Electric Power Engineering, 1999, 19(1): 6-10(in Chinese) Wang L L, Qu J H. Stability and effect factors study of ferrate, iron(Ⅵ) [J]. Journal of Northeast China Institute of Electric Power Engineering, 1999, 19(1): 6-10(in Chinese).
[83] WAGNER W F, GUMP J R, HART E N. Factors affecting stability of aqueous potassium ferrate(Ⅵ) solutions [J]. Analytical Chemistry, 1952, 24(9): 1497-1498. doi: 10.1021/ac60069a037 [84] 贾汉东, 鲍改玲. 过渡金属离子对高铁酸盐溶液稳定性的影响 [J]. 电池, 2004, 34(6): 430-431. doi: 10.3969/j.issn.1001-1579.2004.06.016 JIA H D, BAO G L. The effect of transition metal ions on the stability of ferrate in solution [J]. Battery Bimonthly, 2004, 34(6): 430-431(in Chinese). doi: 10.3969/j.issn.1001-1579.2004.06.016
[85] 傅金祥, 合姣姣, 张祥楠, 等. 高铁酸盐的稳定性研究 [J]. 沈阳建筑大学学报(自然科学版), 2011, 27(6): 1158-1162. FU J X, HE J J, ZHANG X N, et al. Study on stability of ferrate(Ⅵ) [J]. Journal of Shenyang Jianzhu University (Natural Science), 2011, 27(6): 1158-1162(in Chinese).
[86] KAMACHI T, KOUNO T, YOSHIZAWA K. Participation of multioxidants in the pH dependence of the reactivity of ferrate(Ⅵ) [J]. The Journal of Organic Chemistry, 2005, 70(11): 4380-4388. doi: 10.1021/jo050091o [87] 李通, 刘国光, 刘海津, 等. 高铁酸盐氧化降解环丙沙星的实验研究 [J]. 环境科学与技术, 2014, 37(2): 123-128. LI T, LIU G G, LIU H J, et al. Experimental study on oxidation degradation of ciprofloxacin by ferrate(Ⅵ) [J]. Environmental Science & Technology, 2014, 37(2): 123-128(in Chinese).
[88] WANG H Y, LIU Y B, JIANG J Q. Reaction kinetics and oxidation product formation in the degradation of acetaminophen by ferrate (Ⅵ) [J]. Chemosphere, 2016, 155: 583-590. doi: 10.1016/j.chemosphere.2016.04.088 [89] 周正伟, 张晓峰. 高铁酸盐去除污水处理厂出水中的药物残留物 [J]. 常州大学学报(自然科学版), 2019, 31(4): 52-56,69. ZHOU Z W, ZHANG X F. Removal of pharmaceutical residues spiked in effluent from wastewater treatment plant by ferrate(Ⅵ) [J]. Journal of Changzhou University (Natural Science Edition), 2019, 31(4): 52-56,69(in Chinese).
[90] ZHOU Z W, JIANG J Q. Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(Ⅵ) [J]. Chemosphere, 2015, 119: S95-S100. doi: 10.1016/j.chemosphere.2014.04.006 [91] HUANG J L, WANG Y H, LIU G G, et al. Oxidation of indometacin by ferrate (Ⅵ): Kinetics, degradation pathways, and toxicity assessment [J]. Environmental Science and Pollution Research, 2017, 24(11): 10786-10795. doi: 10.1007/s11356-017-8750-x [92] 王涛, 彭道平, 李云祯, 等. 高铁酸盐(Fe(Ⅵ))氧化去除水中PPCPs的研究进展 [J]. 环境工程, 2016, 34(8): 40-44. WANG T, PENG D P, LI Y Z, et al. Research progress ON the oxidation removal of ppcps by ferrate(Fe(Ⅵ)) [J]. Environmental Engineering, 2016, 34(8): 40-44(in Chinese).
[93] 韩琦, 董文艺, 王宏杰, 等. 高铁酸盐氧化法降解四溴双酚A及生物毒性控制 [J]. 哈尔滨工业大学学报, 2018, 50(8): 51-55. doi: 10.11918/j.issn.0367-6234.201707148 HAN Q, DONG W Y, WANG H J, et al. Degradation of tetrabromobisphenol A and toxicity controlling by ferrate(Ⅵ) oxidizing technology [J]. Journal of Harbin Institute of Technology, 2018, 50(8): 51-55(in Chinese). doi: 10.11918/j.issn.0367-6234.201707148
[94] SAILO L, TIWARI D, LEE S M. Degradation of some micro-pollutants from aqueous solutions using ferrate (Ⅵ): Physico-chemical studies [J]. Separation Science and Technology, 2017, 52(17): 2756-2766. [95] 祖可欣. 高铁酸盐降解水中磺胺氯哒嗪的研究[D]. 吉林: 东北电力大学, 2018. ZU K X. Study on degradation of sulfachloropyridazine by ferrate(Ⅵ)[D]. Jilin, China: Northeast Dianli University, 2018(in Chinese).
[96] YANG B, YING G G, ZHAO J L, et al. Oxidation of triclosan by ferrate: Reaction kinetics, products identification and toxicity evaluation [J]. Journal of Hazardous Materials, 2011, 186(1): 227-235. doi: 10.1016/j.jhazmat.2010.10.106 [97] HAN Q, DONG W Y, WANG H J, et al. Degradation of tetrabromobisphenol A by ferrate(Ⅵ) oxidation: Performance, inorganic and organic products, pathway and toxicity control [J]. Chemosphere, 2018, 198: 92-102. doi: 10.1016/j.chemosphere.2018.01.117 [98] YANG B, YING G G, CHEN Z F, et al. Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A [J]. Water Research, 2014, 62: 211-219. doi: 10.1016/j.watres.2014.05.056 [99] SUN X H, FENG M B, DONG S Y, et al. Removal of sulfachloropyridazine by ferrate(Ⅵ): Kinetics, reaction pathways, biodegradation, and toxicity evaluation [J]. Chemical Engineering Journal, 2019, 372: 742-751. doi: 10.1016/j.cej.2019.04.121 [100] YANG B, KOOKANA R S, WILLIAMS M, et al. Oxidation of ciprofloxacin and enrofloxacin by ferrate(Ⅵ): Products identification, and toxicity evaluation [J]. Journal of Hazardous Materials, 2016, 320: 296-303. doi: 10.1016/j.jhazmat.2016.08.040 [101] OHTA T, KAMACHI T, SHIOTA Y, et al. A theoretical study of alcohol oxidation by ferrate [J]. The Journal of Organic Chemistry, 2001, 66(12): 4122-4131. doi: 10.1021/jo001193b [102] SHARMA V K, O’CONNOR D B, CABELLI D. Oxidation of thiocyanate by iron(Ⅴ) in alkaline medium [J]. Inorganica Chimica Acta, 2004, 357(15): 4587-4591. doi: 10.1016/j.ica.2004.07.001 [103] DONG H Y, LI Y, WANG S C, et al. Both Fe(Ⅳ) and radicals are active oxidants in the Fe(Ⅱ)/peroxydisulfate process [J]. Environmental Science & Technology Letters, 2020, 7(3): 219-224. [104] LI X W, LIU X T, LIN C Y, et al. Catalytic oxidation of contaminants by Fe0 activated peroxymonosulfate process: Fe(Ⅳ) involvement, degradation intermediates and toxicity evaluation [J]. Chemical Engineering Journal, 2020, 382: 123013. doi: 10.1016/j.cej.2019.123013 [105] SHARMA V K. Oxidation of inorganic contaminants by ferrates (Ⅵ, Ⅴ, and Ⅳ)-kinetics and mechanisms: A review [J]. Journal of Environmental Management, 2011, 92(4): 1051-1073. doi: 10.1016/j.jenvman.2010.11.026 [106] HUANG Z S, WANG L, LIU Y L, et al. Impact of phosphate on ferrate oxidation of organic compounds: An underestimated oxidant [J]. Environmental Science & Technology, 2018, 52(23): 13897-13907. [107] ZHANG J, ZHU L, SHI Z Y, et al. Rapid removal of organic pollutants by activation sulfite with ferrate [J]. Chemosphere, 2017, 186: 576-579. doi: 10.1016/j.chemosphere.2017.07.102 [108] HUIE R E, NETA P. Chemical behavior of sulfur trioxide(1-) (SO3−) and sulfur pentoxide(1-) (SO5−) radicals in aqueous solutions [J]. The Journal of Physical Chemistry, 1984, 88(23): 5665-5669. doi: 10.1021/j150667a042 [109] 周杰, 王城晨, 朱颖一, 等. 高铁酸盐与过硫酸钠联合降解水中滴滴涕和六六六 [J]. 环境工程学报, 2019, 13(10): 2414-2425. doi: 10.12030/j.cjee.201812107 ZHOU J, WANG C C, ZHU Y Y, et al. Degradation of DDTs and HCHs in aqueous solution by combined K2FeO4 and Na2S2O8 [J]. Chinese Journal of Environmental Engineering, 2019, 13(10): 2414-2425(in Chinese). doi: 10.12030/j.cjee.201812107
[110] SHAO B B, DONG H Y, SUN B, et al. Role of ferrate(Ⅳ) and ferrate(Ⅴ) in activating ferrate(Ⅵ) by calcium sulfite for enhanced oxidation of organic contaminants [J]. Environmental Science & Technology, 2019, 53(2): 894-902. [111] OH W D, DONG Z L, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects [J]. Applied Catalysis B:Environmental, 2016, 194: 169-201. doi: 10.1016/j.apcatb.2016.04.003 [112] ZHOU D N, ZHANG H, CHEN L. Sulfur-replaced Fenton systems: Can sulfate radical substitute hydroxyl radical for advanced oxidation technologies? [J]. Journal of Chemical Technology & Biotechnology, 2015, 90(5): 775-779. [113] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38. doi: 10.1038/238037a0 [114] CHENTHAMARAKSHAN C R, RAJESHWAR K, WOLFRUM E J. Heterogeneous photocatalytic reduction of Cr(Ⅵ) in UV-irradiated titania suspensions: Effect of protons, ammonium ions, and other interfacial aspects [J]. Langmuir, 2000, 16(6): 2715-2721. [115] YUAN B L, LI X Z, GRAHAM N. Aqueous oxidation of dimethyl phthalate in a Fe(Ⅵ)-TiO2-UV reaction system[J].Water Research, 2008 , 42 (6/7): 1413 - 1420. [116] MA Y, ZHANG K J, LI C, et al. Oxidation of sulfonamides In aqueous solution by UV-TiO2-Fe(VI) [J]. BioMed Research International, 2015, 2015: 973942. [117] 朱丽婷, 张运浩, 陈舒展, 等. K2FeO4协同TiO2光催化降解水中邻苯二甲酸二甲酯 [J]. 环境工程学报, 2019, 13(10): 2369-2376. doi: 10.12030/j.cjee.201811100 ZHU L T, ZHANG Y H, CHEN S Z, et al. Dimethyl phthalate degradation by TiO2-UV photo-catalysis process combined with K2FeO4 [J]. Chinese Journal of Environmental Engineering, 2019, 13(10): 2369-2376(in Chinese). doi: 10.12030/j.cjee.201811100
[118] LI C, LI X Z. Degradation of endocrine disrupting chemicals in aqueous solution by interaction of photocatalytic oxidation and ferrate (Ⅵ) oxidation [J]. Water Science and Technology, 2007, 55(1/2): 217-223. [119] SHARMA V K, GRAHAM N J D, LI X Z, et al. Ferrate(Ⅵ) enhanced photocatalytic oxidation of pollutants in aqueous TiO2 suspensions [J]. Environmental Science and Pollution Research, 2010, 17(2): 453-461. doi: 10.1007/s11356-009-0170-0