[1] |
GAO F, LIU G C, SHE Z L, et al. Effects of salinity on pollutant removal and bacterial community in a partially saturated vertical flow constructed wetland[J]. Bioresource Technology, 2021, 329: 124890. doi: 10.1016/j.biortech.2021.124890
|
[2] |
FANG D X, ZHAO G, XU X Y, et al. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions[J]. Bioresource Technology, 2018, 249: 684-693. doi: 10.1016/j.biortech.2017.10.063
|
[3] |
WANG Z, HUANG M L, QI R, et al. Enhanced nitrogen removal and associated microbial characteristics in a modified single-stage tidal flow constructed wetland with step-feeding[J]. Chemical Engineering Journal, 2017, 314: 291-300. doi: 10.1016/j.cej.2016.11.060
|
[4] |
LU J X, GUO Z Z, KANG Y, et al. Recent advances in the enhanced nitrogen removal by oxygen-increasing technology in constructed wetlands[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111330. doi: 10.1016/j.ecoenv.2020.111330
|
[5] |
Cao X K, JIANG L, ZHENG H, et al. Constructed wetlands for rural domestic wastewater treatment: A coupling of tidal strategy, in-situ bio-regeneration of zeolite and Fe(Ⅱ)-oxygen denitrification[J]. Bioresource Technology, 2022, 344: 126185. doi: 10.1016/j.biortech.2021.126185
|
[6] |
WU S B, ZHANG D X, AUSTIN D, et al. Evaluation of a lab-scale tidal flow constructed wetland performance: Oxygen transfer capacity, organic matter and ammonium removal[J]. Ecological Engineering, 2011, 37(11): 1789-1795. doi: 10.1016/j.ecoleng.2011.06.026
|
[7] |
XU D, LIN L L, XU P, et al. Effect of drained-flooded time ratio on ammonia nitrogen removal in a constructed wetland-microbial fuel cell system by tidal flow operation[J]. Journal of Water Process Engineering, 2021, 44: 102450. doi: 10.1016/j.jwpe.2021.102450
|
[8] |
CUI L H, FENG J K, OUYANG Y, et al. Removal of nutrients from septic effluent with re-circulated hybrid tidal flow constructed wetland[J]. Ecological Engineering, 2012, 46: 112-115. doi: 10.1016/j.ecoleng.2012.06.003
|
[9] |
张翔, 李子富, 周晓琴, 等. 我国人工湿地标准中潜流湿地设计分析[J]. 中国给水排水, 2020, 36(18): 24-31. doi: 10.19853/j.zgjsps.1000-4602.2020.18.005
|
[10] |
TAN X, YANG Y L, LIU Y W, et al. Quantitative ecology associations between heterotrophic nitrification-aerobic denitrification, nitrogen-metabolism genes, and key bacteria in a tidal flow constructed wetland[J]. Bioresource Technology, 2021, 337: 125449. doi: 10.1016/j.biortech.2021.125449
|
[11] |
HAN Z F, DONG J, SHEN Z Q, et al. Nitrogen removal of anaerobically digested swine wastewater by pilot-scale tidal flow constructed wetland based on in-situ biological regeneration of zeolite[J]. Chemosphere, 2019, 217: 364-373. doi: 10.1016/j.chemosphere.2018.11.036
|
[12] |
REHMAN F, PERVEZ A, KHATTAK B N, et al. Constructed Wetlands: Perspectives of the oxygen released in the rhizosphere of macrophytes[J]. Clean-Soil Air Water, 2017, 45(1).
|
[13] |
WANG X O, BAI J, TIAN Y M, et al. Synergistic effects of natural ventilation and animal disturbance on oxygen transfer, pollutants removal and microbial activity in constructed wetlands[J]. Chemosphere, 2021, 283: 131175. doi: 10.1016/j.chemosphere.2021.131175
|
[14] |
MOHAN. T R, KUMAR M S M, RAO L. Numerical modelling of oxygen mass transfer in diffused aeration systems: A CFD-PBM approach[J]. Journal of Water Process Engineering, 2021, 40: 101920. doi: 10.1016/j.jwpe.2021.101920
|
[15] |
AUSTIN D, NIVALA J. Energy requirements for nitrification and biological nitrogen removal in engineered wetlands[J]. Ecological Engineering, 2009, 35(2): 184-192. doi: 10.1016/j.ecoleng.2008.03.002
|
[16] |
LIU M H, WU S B, CHEN L, et al. How substrate influences nitrogen transformations in tidal flow constructed wetlands treating high ammonium wastewater?[J]. Ecological Engineering, 2014, 73: 478-486. doi: 10.1016/j.ecoleng.2014.09.111
|
[17] |
JIA W L, ZHANG J, WU J, et al. Effect of intermittent operation on contaminant removal and plant growth in vertical flow constructed wetlands: A microcosm experiment[J]. Desalination, 2010, 262(1): 202-208.
|
[18] |
ZHI W, JI G D. Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints[J]. Water Research, 2014, 64: 32-41. doi: 10.1016/j.watres.2014.06.035
|
[19] |
LI C Y, WU S B, DONG R J. Dynamics of organic matter, nitrogen and phosphorus removal and their interactions in a tidal operated constructed wetland[J]. Journal of Environmental Management, 2015, 151(310): 310-316.
|
[20] |
LI L Z, HE C G, JI G D, et al. Nitrogen removal pathways in a tidal flow constructed wetland under flooded time constraints[J]. Ecological Engineering, 2015, 81: 266-271. doi: 10.1016/j.ecoleng.2015.04.073
|
[21] |
AUSTIN D, LOHAN E, VERSON E J P W E F. Nitrification and denitrification in a tidal vertical flow wetland pilot[J]. Proceedings of the Water Environment Federation, 2003, 40(31): 333-357.
|
[22] |
HU Y S, ZHAO Y Q, RYMSZEWICZ A. Robust biological nitrogen removal by creating multiple tides in a single bed tidal flow constructed wetland[J]. Science of the Total Environment, 2014, 470-471: 1197-1204. doi: 10.1016/j.scitotenv.2013.10.100
|
[23] |
ZHAO D, GAO P, XU L, et al. Disproportionate responses between free-living and particle-attached bacteria during the transition to oxygen-deficient zones in the Bohai Seawater[J]. Science of the Total Environment, 2021, 791: 148097. doi: 10.1016/j.scitotenv.2021.148097
|
[24] |
KIM K K, LEE K C, LEE J-S. Nakamurella panacisegetis sp. nov. and proposal for reclassification of Humicoccus flavidus Yoon et al., 2007 and Saxeibacter lacteus Lee et al., 2008 as Nakamurella flavida comb. nov. and Nakamurella lactea comb. nov[J]. Systematic and Applied Microbiology, 2012, 35(5): 291-296. doi: 10.1016/j.syapm.2012.05.002
|
[25] |
GONZALEZ-MARTINEZ A, RODRIGUEZ-SANCHEZ A, GARCIA-RUIZ M J, et al. Performance and bacterial community dynamics of a CANON bioreactor acclimated from high to low operational temperatures[J]. Chemical Engineering Journal, 2016, 287: 557-567. doi: 10.1016/j.cej.2015.11.081
|
[26] |
ZHENG H, JIANG L, CAO X K, et al. A combined deodorization reflux system and tidal flow constructed wetland for sewage treatment performance[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106953. doi: 10.1016/j.jece.2021.106953
|
[27] |
AUSTIN D W L, STROUS M. Mass transport and microbiological mechanisms of nitrification and denitrification in tidal flow constructed wetland systems[J]. 10th International Conference on Wetland Systems for Water Pollution Control, 2006, 209-216.
|
[28] |
SUN G Z, ZHAO Y Q, ALLEN S. Enhanced removal of organic matter and ammoniacal-nitrogen in a column experiment of tidal flow constructed wetland system[J]. Journal of Biotechnology, 2005, 115(2): 189-197. doi: 10.1016/j.jbiotec.2004.08.009
|