-
人工湿地因其具有较低的运行成本被广泛应用于低浓度废水处理[1-2],但人工湿地进水中溶解氧浓度(dissolved oxygen, DO)仅为3~4 mg·L−1[3],氧供应问题会对污染物去除效果产生十分不利的影响[4]。潮汐流人工湿地(tidal flow constructed wetlands, TFCWs)具有良好的空气自动复氧能力,能够极大改善传统人工湿地供氧能力不足的问题,目前已有研究应用于农村污水处理[5]。
湿地潮汐运行中的排空过程是TFCWs的优势特征,排空时间的设定直接影响运行过程中的复氧和处理效果。长排空时间能够强化复氧过程,促进湿地的硝化作用和有机污染物的去除[6]。排空时间在2~36 h的研究均有所报道[7-8],排空时间差别大,处理效果也不一致,且排空时间的设定没有理论依据,建立简便实用的方法用于确定特定潮汐流人工湿地合适的排空时间十分必要。合适的排空时间与湿地微生物的耗氧过程紧密相关,但目前对TFCWs排空期氧消耗过程的研究较少,湿地氧消耗过程与污染物降解关系之间的联系没有探究。确定特定潮汐流人工湿地系统合适的排空时间有利于优化潮汐运行的策略,提高湿地处理能力。基质粒径是人工湿地系统的重要参数,粒径的选择直接影响湿地的孔隙率和比表面积[9],潮汐流人工湿地排水时,基质粒径大小影响吸入空气量和排空期氧传质过程。此前已有对湿地潮汐运行的多项研究,主要包括淹没排空时间的影响,进水水质C/N[10]等方面。但基质粒径对TFCWs处理效果的影响没有探究,不同粒径对TFCWs在排空期的氧传质过程的影响尚不明确。
基于上述原因,本研究建造了不同基质粒径的TFCWs,并以农村化粪池尾水的水质类型为处理对象,探究了基质粒径对TFCWs处理效果的影响,并从排空期氧消耗过程分析了湿地耗氧的主要时段,以期为优化TFCWs的设计运行提供参考。
基质粒径与排空时间对潮汐流人工湿地运行效能的影响
Effect of substrate size and drained time on the treatment performance of tidal flow constructed wetlands
-
摘要: 潮汐运行是强化人工湿地供氧的一种有效途径。为了解基质粒径对潮汐流人工湿地(TFCWs)处理效果及复氧过程的影响,研究了不同基质粒径TFCWs的处理性能,建立了TFCWs排空期氧转移过程的研究方法。结果表明基质粒径影响湿地对NH4+的吸附性及排空期基质孔隙氧体积占比进而影响处理效果,7~9 mm基质粒径的湿地达到最佳的氨氮去除率82.6%,3~5 mm基质粒径的湿地达到最佳的COD去除率88.2%,粒径基质小的湿地中氨氧化菌属和反硝化菌属的相对丰度更高,脱氮能力强;分析排空期基质孔隙氧体积占比变化与湿地微生物耗氧过程的联系,能够优化潮汐流湿地系统的排空时间,湿地微生物的耗氧活动主要集中在氧体积占比快速下降阶段,更长的排空时间对复氧能力没有明显提升,本研究中8 h的排空时间即可满足湿地系统的氧需求。Abstract: Tidal operation is an effective technique to enhance the oxygen supply of constructed wetlands. In order to explore the effect of substrate particle size on the treatment performance and reoxygenation process of tidal flow constructed wetlands (TFCWs), the treatment performance of TFCWs with different substrate particle sizes was studied, and the studying method of oxygen transfer process in TFCWs during drained period was established. The results showed that particle size of the substrate affected the adsorption of NH4+ and oxygen concentration during the drained period, which in turn affected the treatment performance. The wetland with 7~9 mm substrate achieved the best ammonia removal rate of 82.6%, and wetland with 3~5 mm substrate achieved the best COD removal rate of 88.2%. The wetland with small substrate particle size had higher relative abundance of ammonia oxidizing bacteria and denitrifying bacteria, which had advantages in denitrification. Analyzing the relationship between the change in oxygen concentration and the oxygen consumption process during the drained period can optimize the drained time of TFCWs. The oxygen consumption activity of microorganisms was mainly concentrated at the rapid decline stage of oxygen concentration. The longer drained time did not significantly improve the reoxygenation ability. In this study, the drained time of 8 hours can meet the oxygen demand.
-
表 1 实验组设置及基本参数
Table 1. Experimental group setting and basic parameters
实验组 基质粒径/mm 孔隙率/% 有效工作容积/L D3-5 3~5 43.5 10.9 D7-9 7~9 41.5 10.4 D20-25 20~25 40.7 10.2 表 2 潮汐流人工湿地污染物去除效果
Table 2. Treatment performance of TFCWs
mg·L−1 组别 第1阶段 第2阶段 NH4+-N NO3−-N NO2−-N COD NH4+-N NO3−-N NO2−-N COD 系统进水 51.66±2.21 1.44±0.80 0.00±0.01 209.0±20.5 51.43±2.33 1.44±0.80 0.00±0.01 206.3±18.2 D3-5出水 12.36±1.47 11.38±2.39 5.27±1.14 25.1±4.1 12.97±2.80 12.38±3.12 0.73±0.87 24.3±7.9 D7-9出水 9.22±1.00 13.69±2.32 8.37±1.06 29.5±5.4 8.95±1.27 14.23±3.76 0.91±1.06 25.6±9.6 D20-25出水 31.59±0.87 0.23±0.18 0.09±0.10 38.2±6.4 30.32±1.00 0.15±0.11 0.03±0.06 28.6±9.9 -
[1] GAO F, LIU G C, SHE Z L, et al. Effects of salinity on pollutant removal and bacterial community in a partially saturated vertical flow constructed wetland[J]. Bioresource Technology, 2021, 329: 124890. doi: 10.1016/j.biortech.2021.124890 [2] FANG D X, ZHAO G, XU X Y, et al. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions[J]. Bioresource Technology, 2018, 249: 684-693. doi: 10.1016/j.biortech.2017.10.063 [3] WANG Z, HUANG M L, QI R, et al. Enhanced nitrogen removal and associated microbial characteristics in a modified single-stage tidal flow constructed wetland with step-feeding[J]. Chemical Engineering Journal, 2017, 314: 291-300. doi: 10.1016/j.cej.2016.11.060 [4] LU J X, GUO Z Z, KANG Y, et al. Recent advances in the enhanced nitrogen removal by oxygen-increasing technology in constructed wetlands[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111330. doi: 10.1016/j.ecoenv.2020.111330 [5] Cao X K, JIANG L, ZHENG H, et al. Constructed wetlands for rural domestic wastewater treatment: A coupling of tidal strategy, in-situ bio-regeneration of zeolite and Fe(Ⅱ)-oxygen denitrification[J]. Bioresource Technology, 2022, 344: 126185. doi: 10.1016/j.biortech.2021.126185 [6] WU S B, ZHANG D X, AUSTIN D, et al. Evaluation of a lab-scale tidal flow constructed wetland performance: Oxygen transfer capacity, organic matter and ammonium removal[J]. Ecological Engineering, 2011, 37(11): 1789-1795. doi: 10.1016/j.ecoleng.2011.06.026 [7] XU D, LIN L L, XU P, et al. Effect of drained-flooded time ratio on ammonia nitrogen removal in a constructed wetland-microbial fuel cell system by tidal flow operation[J]. Journal of Water Process Engineering, 2021, 44: 102450. doi: 10.1016/j.jwpe.2021.102450 [8] CUI L H, FENG J K, OUYANG Y, et al. Removal of nutrients from septic effluent with re-circulated hybrid tidal flow constructed wetland[J]. Ecological Engineering, 2012, 46: 112-115. doi: 10.1016/j.ecoleng.2012.06.003 [9] 张翔, 李子富, 周晓琴, 等. 我国人工湿地标准中潜流湿地设计分析[J]. 中国给水排水, 2020, 36(18): 24-31. doi: 10.19853/j.zgjsps.1000-4602.2020.18.005 [10] TAN X, YANG Y L, LIU Y W, et al. Quantitative ecology associations between heterotrophic nitrification-aerobic denitrification, nitrogen-metabolism genes, and key bacteria in a tidal flow constructed wetland[J]. Bioresource Technology, 2021, 337: 125449. doi: 10.1016/j.biortech.2021.125449 [11] HAN Z F, DONG J, SHEN Z Q, et al. Nitrogen removal of anaerobically digested swine wastewater by pilot-scale tidal flow constructed wetland based on in-situ biological regeneration of zeolite[J]. Chemosphere, 2019, 217: 364-373. doi: 10.1016/j.chemosphere.2018.11.036 [12] REHMAN F, PERVEZ A, KHATTAK B N, et al. Constructed Wetlands: Perspectives of the oxygen released in the rhizosphere of macrophytes[J]. Clean-Soil Air Water, 2017, 45(1). [13] WANG X O, BAI J, TIAN Y M, et al. Synergistic effects of natural ventilation and animal disturbance on oxygen transfer, pollutants removal and microbial activity in constructed wetlands[J]. Chemosphere, 2021, 283: 131175. doi: 10.1016/j.chemosphere.2021.131175 [14] MOHAN. T R, KUMAR M S M, RAO L. Numerical modelling of oxygen mass transfer in diffused aeration systems: A CFD-PBM approach[J]. Journal of Water Process Engineering, 2021, 40: 101920. doi: 10.1016/j.jwpe.2021.101920 [15] AUSTIN D, NIVALA J. Energy requirements for nitrification and biological nitrogen removal in engineered wetlands[J]. Ecological Engineering, 2009, 35(2): 184-192. doi: 10.1016/j.ecoleng.2008.03.002 [16] LIU M H, WU S B, CHEN L, et al. How substrate influences nitrogen transformations in tidal flow constructed wetlands treating high ammonium wastewater?[J]. Ecological Engineering, 2014, 73: 478-486. doi: 10.1016/j.ecoleng.2014.09.111 [17] JIA W L, ZHANG J, WU J, et al. Effect of intermittent operation on contaminant removal and plant growth in vertical flow constructed wetlands: A microcosm experiment[J]. Desalination, 2010, 262(1): 202-208. [18] ZHI W, JI G D. Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints[J]. Water Research, 2014, 64: 32-41. doi: 10.1016/j.watres.2014.06.035 [19] LI C Y, WU S B, DONG R J. Dynamics of organic matter, nitrogen and phosphorus removal and their interactions in a tidal operated constructed wetland[J]. Journal of Environmental Management, 2015, 151(310): 310-316. [20] LI L Z, HE C G, JI G D, et al. Nitrogen removal pathways in a tidal flow constructed wetland under flooded time constraints[J]. Ecological Engineering, 2015, 81: 266-271. doi: 10.1016/j.ecoleng.2015.04.073 [21] AUSTIN D, LOHAN E, VERSON E J P W E F. Nitrification and denitrification in a tidal vertical flow wetland pilot[J]. Proceedings of the Water Environment Federation, 2003, 40(31): 333-357. [22] HU Y S, ZHAO Y Q, RYMSZEWICZ A. Robust biological nitrogen removal by creating multiple tides in a single bed tidal flow constructed wetland[J]. Science of the Total Environment, 2014, 470-471: 1197-1204. doi: 10.1016/j.scitotenv.2013.10.100 [23] ZHAO D, GAO P, XU L, et al. Disproportionate responses between free-living and particle-attached bacteria during the transition to oxygen-deficient zones in the Bohai Seawater[J]. Science of the Total Environment, 2021, 791: 148097. doi: 10.1016/j.scitotenv.2021.148097 [24] KIM K K, LEE K C, LEE J-S. Nakamurella panacisegetis sp. nov. and proposal for reclassification of Humicoccus flavidus Yoon et al., 2007 and Saxeibacter lacteus Lee et al., 2008 as Nakamurella flavida comb. nov. and Nakamurella lactea comb. nov[J]. Systematic and Applied Microbiology, 2012, 35(5): 291-296. doi: 10.1016/j.syapm.2012.05.002 [25] GONZALEZ-MARTINEZ A, RODRIGUEZ-SANCHEZ A, GARCIA-RUIZ M J, et al. Performance and bacterial community dynamics of a CANON bioreactor acclimated from high to low operational temperatures[J]. Chemical Engineering Journal, 2016, 287: 557-567. doi: 10.1016/j.cej.2015.11.081 [26] ZHENG H, JIANG L, CAO X K, et al. A combined deodorization reflux system and tidal flow constructed wetland for sewage treatment performance[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106953. doi: 10.1016/j.jece.2021.106953 [27] AUSTIN D W L, STROUS M. Mass transport and microbiological mechanisms of nitrification and denitrification in tidal flow constructed wetland systems[J]. 10th International Conference on Wetland Systems for Water Pollution Control, 2006, 209-216. [28] SUN G Z, ZHAO Y Q, ALLEN S. Enhanced removal of organic matter and ammoniacal-nitrogen in a column experiment of tidal flow constructed wetland system[J]. Journal of Biotechnology, 2005, 115(2): 189-197. doi: 10.1016/j.jbiotec.2004.08.009