[1] |
ZHAO R, BIESHEUVEL P M, VAN DER WAL A. Energy consumption and constant current operation in membrane capacitive deionization[J]. Energy & Environmental Science, 2012, 5(11): 9520-9527.
|
[2] |
SUSS M E, BAUMANN T F, BOURCIER W L, et al. Capacitive desalination with flow-through electrodes[J]. Energy & Environmental Science, 2012, 5(11): 9511-9519.
|
[3] |
GARCÍA-QUISMONDO E, SANTOS C, LADO J, et al. Optimizing the energy efficiency of capacitive deionization reactors working under real-world conditions[J]. Environmental Science & Technology, 2013, 47(20): 11866-11872.
|
[4] |
TANG W, LIANG J, HE D, et al. Various cell architectures of capacitive deionization: Recent advances and future trends[J]. Water Research, 2019, 150: 225-251. doi: 10.1016/j.watres.2018.11.064
|
[5] |
RAMACHANDRAN A, OYARZUN D I, HAWKS S A, et al. High water recovery and improved thermodynamic efficiency for capacitive deionization using variable flowrate operation[J]. Water Research, 2019, 155: 76-85. doi: 10.1016/j.watres.2019.02.007
|
[6] |
XUE Y, CAO M, GAO J Z, et al. Electroadsorption of uranium on amidoxime modified graphite felt[J]. Separation and Purification Technology, 2021, 255: 117753.
|
[7] |
蒋绍阶, 张若汉, 熊关全. 电容去离子过程电吸附行为与法拉第反应关系及去除水体硬度[J]. 水处理技术, 2017, 43(9): 24-32.
|
[8] |
董旭明, 张胜寒, 狄杰, 等. 电吸附电极材料的研究进展[J]. 工业水处理, 2022, 42(1): 48-55.
|
[9] |
徐斌, 吴文倩, 张毅敏, 等. 石墨烯基电吸附电极材料的研究进展[J]. 水处理技术, 2020, 46(2): 13-24.
|
[10] |
PORADA S, ZHAO R, VAN DER WAL A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442. doi: 10.1016/j.pmatsci.2013.03.005
|
[11] |
SUSS M E, PORADA S, SUN X, et al. Water desalination via capacitive deionization: What is it and what can we expect from it?[J]. Energy & Environmental Science, 2015, 8(8): 2296-2319.
|
[12] |
LI H, ZOU L, PAN L, et al. Novel graphene-like electrodes for capacitive deionization[J]. Environmental Science & Technology, 2010, 44(22): 8692-8697.
|
[13] |
ALMARZOOQI F A, AL GHAFERI A A, SAADAT I, et al. Application of capacitive deionisation in water desalination: A review[J]. Desalination, 2014, 342: 3-15. doi: 10.1016/j.desal.2014.02.031
|
[14] |
CHO Y, LEE K S, YANG S, et al. A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization[J]. Energy & Environmental Science, 2017, 10(8): 1746-1750.
|
[15] |
JEON S I, PARK H R, YEO J G, et al. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J]. Energy & Environmental Science, 2013, 6(5): 1471-1475.
|
[16] |
雍天智, 李阳, 陆建刚, 等. 流动电极电容去离子技术研究进展[J]. 工业水处理, 2023, 43(1): 17-25.
|
[17] |
莫恒亮, 唐阳, 陈咏梅, 等. 流动电极电吸附(FCDI)与电渗析(ED))耦合实现连续脱盐技术研究[J]. 现代化工, 2019, 39(5): 91-95.
|
[18] |
杨宏艳, 张卫珂, 葛坤, 等. 流动性电极电容去离子技术的脱盐性能研究[J]. 环境污染与防治, 2017, 39(8): 911-919.
|
[19] |
XU L, MAO Y, ZONG Y, et al. Membrane-current collector-based flow-electrode capacitive deionization system: A novel stack configuration for scale-up desalination[J]. Environmental Science & Technology, 2021, 55(19): 13286-13296.
|
[20] |
YANG S, CHOI J, YEO J G, et al. Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration[J]. Environmental Science & Technology, 2016, 50(11): 5892-5899.
|
[21] |
TANG K, ZHOU K. Water desalination by flow-electrode capacitive deionization in overlimiting current regimes[J]. Environmental Science & Technology, 2020, 54(9): 5853-5863.
|
[22] |
ZHANG C, WU L, MA J, et al. Integrated flow-electrode capacitive deionization and microfiltration system for continuous and energy-efficient brackish water desalination[J]. Environmental Science & Technology, 2019, 53(22): 13364-13373.
|
[23] |
MA J, ZHANG C, YANG F, et al. Carbon black flow electrode enhanced electrochemical desalination using single-cycle operation[J]. Environmental Science & Technology, 2020, 54(2): 1177-1185.
|
[24] |
MA J, MA J, ZHANG C, et al. Water recovery rate in short-circuited closed-cycle operation of flow-electrode capacitive deionization (FCDI)[J]. Environmental Science & Technology, 2019, 53(23): 13859-13867.
|
[25] |
HE C, MA J, ZHANG C, et al. Short-circuited closed-cycle operation of flow-electrode CDI for brackish water softening[J]. Environmental Science & Technology, 2018, 52(16): 9350-9360.
|
[26] |
ZHANG C, MA J, WU L, et al. Flow electrode capacitive deionization (FCDI): Recent developments, environmental applications, and future perspectives[J]. Environmental Science & Technology, 2021, 55(8): 4243-4267.
|
[27] |
DENNISON C R, GOGOTSI Y, KUMBUR E C. In situ distributed diagnostics of flowable electrode systems: resolving spatial and temporal limitations[J]. Physical Chemistry Chemical Physics, 2014, 16(34): 18241-18252. doi: 10.1039/C4CP02820A
|
[28] |
HATZELL K B, HATZELL M C, COOK K M, et al. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization[J]. Environmental Science & Technology, 2015, 49(5): 3040-3047.
|
[29] |
PARK H, CHOI J, YANG S, et al. Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization[J]. RSC Advances, 2016, 6(74): 69720-69727. doi: 10.1039/C6RA02480G
|
[30] |
MA J, MA J, ZHANG C, et al. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration[J]. Water Research, 2020, 168: 115186. doi: 10.1016/j.watres.2019.115186
|
[31] |
MA J, HE C, HE D, et al. Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI[J]. Water Research, 2018, 144: 296-303. doi: 10.1016/j.watres.2018.07.049
|
[32] |
CHO Y, YOO C-Y, LEE S W, et al. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes[J]. Water Research, 2019, 151: 252-259. doi: 10.1016/j.watres.2018.11.080
|
[33] |
LIANG P, SUN X, BIAN Y, et al. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode[J]. Desalination, 2017, 420: 63-69. doi: 10.1016/j.desal.2017.05.023
|
[34] |
TANG K, YIACOUMI S, LI Y, et al. Enhanced water desalination by increasing the electroconductivity of carbon powders for high-performance flow-electrode capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1085-1094.
|
[35] |
LUO L, HE Q, YI D, et al. Indirect charing of carbon by aqueous redox mediators contributes to the enhanced desalination performance in flow-electrode CDI[J]. Water Research, 2022, 220: 118688. doi: 10.1016/j.watres.2022.118688
|
[36] |
MA J, HE D, TANG W, et al. Development of redox-active flow electrodes for high-performance capacitive deionization[J]. Environmental Science & Technology, 2016, 50(24): 13495-13501.
|
[37] |
TANG K, ZHENG H, DU P, et al. Simultaneous fractionation, desalination, and dye removal of dye/salt mixtures by carbon cloth-modified flow-electrode capacitive deionization[J]. Environmental Science & Technology, 2022, 56(12): 8885-8896.
|
[38] |
CASTAÑEDA L F, WALSH F C, NAVA J L, et al. Graphite felt as a versatile electrode material: Properties, reaction environment, performance and applications[J]. Electrochimica Acta, 2017, 258: 1115-1139. doi: 10.1016/j.electacta.2017.11.165
|