-
电容去离子(capacitive deionization,CDI)技术作为一种低能耗,绿色的脱盐技术受到了很多研究者的关注[1-9]。CDI技术主要依赖于在电极表面形成的双电层来捕获进水中的阴阳离子[7-13]。而CDI技术的工作原理如图1所示。
然而,受限于固定电极的低吸附容量,CDI技术在现阶段只适用于处理中低盐度的苦咸水[7-9]。并且CDI的电极材料在吸附饱和之后需要再生,这将导致无法实现连续流的操作[6-9,14]。因此,JEON的研究团队于2013年提出了流动电极电容去离子技术(flow electrode capacitive deionization,FCDI),其使用流动的粉末活性炭浆液替代传统的固定碳电极[15]。这里使用的流动电极含有更多的活性物质(活性炭),因此,可提高系统整体的吸附容量,这将使得处理高盐度进水(例如海水等)成为可能[16-21]。同时,吸附饱和的流动电极可以通过在系统外混合阴极和阳极材料来实现再生,实现FCDI系统连续运行[22-25]。
然而,在流动电极中粉末活性炭的导电能力很弱,导致了粉末活性炭之间的电子传递非常低效。只有靠近集流体的部分粉末活性炭可以形成双电层结构从而捕获离子,导致流动电极中大部分处于电中性的粉末活性炭无法有效的实现离子去除[26-27]。研究者通过增加流动电极中的活性碳含量,提高了活性炭颗粒之间的碰撞概率,强化了颗粒之间的电子传递[28-29]。然而,活性炭含量的提高将会导致流动电极的黏度增加,这有可能导致流道的堵塞。因此,活性炭含量的提高是存在上限的,通常大约在15%[30-31]。同时,一些研究者通过在流动电极中添加高导电性的物质来建立高效的导电网络,从而提升活性炭的利用率以增加FCDI系统的脱盐效率[32-36]。增加活性炭的含量或者是添加高导电性物质的目的是促进活性炭与集流体之间的电子转移。因此,是否有可能通过优化集流体的材料来强化系统的电子转移?
在传统的FCDI装置中,现阶段使用最多的集流体材料是石墨板[30,37],这主要是因为其良好的导电性和耐腐蚀性。然而,石墨板本身易碎,凹槽的加工耗时昂贵,而且石墨板的密度很大,不利于FCDI系统的工程应用。因此,需要更为合适的材料来取代石墨板。而石墨毡是由石墨碳纤维组成的,同时拥有良好的导电性、耐腐蚀性、高孔隙度和良好的液体渗透性[38]。与二维石墨板相比,石墨毡作为三维多孔电极可以提供更多的接触位点,促进流动电极与集流体之间的电子转移。并且,石墨毡的密度很小(约为石墨板密度的1/20),易于加工处理,也有利于FCDI设备的扩大化和工业化应用。
因此,本研究预期使用石墨毡而不是石墨板,作为FCDI系统的集流体,利用石墨毡的三维多孔结构来增加流动电极与集流体之间的电子转移,强化脱盐性能。本文侧重于探究石墨毡在强化FCDI系统脱盐性能上的可行性以及石墨毡在强化脱盐过程中的机理,以对FCDI技术的应用发展提供帮助。
石墨毡集流体提升流动电极电容去离子脱盐性能
Enhanced desalination performance of flow electrode capacitive deionization by introduction of graphite felt as current collector
-
摘要: 针对流动电极电容去离子技术(FCDI)中活性炭利用率低的问题,采用三维多孔石墨毡充当集流体,强化系统的电子转移,提升脱盐性能。结果表明,石墨毡的引入使FCDI系统的脱盐效果提升了175%,并且将脱盐能耗降低了40%。通过分别比较石墨毡和活性炭对于系统脱盐效果的贡献,发现石墨毡主要是通过强化活性炭与集流体之间的电子传递,实现FCDI系统脱盐效率的提升。同时,阴阳极侧电子传递实验也证实了石墨毡的引入的确提升了集流体与活性炭之间的电子传递。这项研究解决了FCDI系统中活性炭的低利用率问题,为FCDI技术的应用与推广提供了理论上的指导。Abstract: As a new desalination technology, flow electrode capacitive deionization (FCDI) has received great attention. However, the poor electrical conductivity of activated carbon used in FCDI system has an adverse effect on its desalination performance. Therefore, in this study, three-dimensional porous graphite felt was introduced as current collector to increase the utilization of activated carbon in the flow electrode, so as to improve the electron transfer and the desalination performance of the FCDI system. The results showed that the introduction of graphite felt increased the desalination rate of FCDI by 175% and reduced the power consumption per unit desalination by 40%. By comparing the contribution rate to FCDI desalination between graphite felt and activated carbon, it was shown that graphite felt improved the desalination performance of FCDI mainly by strengthening the electron transfer between activated carbon and current collector. The experiment of electron transfer between cathode and anode confirmed that the introduction of graphite felt promoted the electron transfer between current collector and activated carbon. This study solves the problem of low utilization of activated carbon in FCDI system and provides a theoretical guidance for the popularization and application of FCDI.
-
-
[1] ZHAO R, BIESHEUVEL P M, VAN DER WAL A. Energy consumption and constant current operation in membrane capacitive deionization[J]. Energy & Environmental Science, 2012, 5(11): 9520-9527. [2] SUSS M E, BAUMANN T F, BOURCIER W L, et al. Capacitive desalination with flow-through electrodes[J]. Energy & Environmental Science, 2012, 5(11): 9511-9519. [3] GARCÍA-QUISMONDO E, SANTOS C, LADO J, et al. Optimizing the energy efficiency of capacitive deionization reactors working under real-world conditions[J]. Environmental Science & Technology, 2013, 47(20): 11866-11872. [4] TANG W, LIANG J, HE D, et al. Various cell architectures of capacitive deionization: Recent advances and future trends[J]. Water Research, 2019, 150: 225-251. doi: 10.1016/j.watres.2018.11.064 [5] RAMACHANDRAN A, OYARZUN D I, HAWKS S A, et al. High water recovery and improved thermodynamic efficiency for capacitive deionization using variable flowrate operation[J]. Water Research, 2019, 155: 76-85. doi: 10.1016/j.watres.2019.02.007 [6] XUE Y, CAO M, GAO J Z, et al. Electroadsorption of uranium on amidoxime modified graphite felt[J]. Separation and Purification Technology, 2021, 255: 117753. [7] 蒋绍阶, 张若汉, 熊关全. 电容去离子过程电吸附行为与法拉第反应关系及去除水体硬度[J]. 水处理技术, 2017, 43(9): 24-32. [8] 董旭明, 张胜寒, 狄杰, 等. 电吸附电极材料的研究进展[J]. 工业水处理, 2022, 42(1): 48-55. [9] 徐斌, 吴文倩, 张毅敏, 等. 石墨烯基电吸附电极材料的研究进展[J]. 水处理技术, 2020, 46(2): 13-24. [10] PORADA S, ZHAO R, VAN DER WAL A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442. doi: 10.1016/j.pmatsci.2013.03.005 [11] SUSS M E, PORADA S, SUN X, et al. Water desalination via capacitive deionization: What is it and what can we expect from it?[J]. Energy & Environmental Science, 2015, 8(8): 2296-2319. [12] LI H, ZOU L, PAN L, et al. Novel graphene-like electrodes for capacitive deionization[J]. Environmental Science & Technology, 2010, 44(22): 8692-8697. [13] ALMARZOOQI F A, AL GHAFERI A A, SAADAT I, et al. Application of capacitive deionisation in water desalination: A review[J]. Desalination, 2014, 342: 3-15. doi: 10.1016/j.desal.2014.02.031 [14] CHO Y, LEE K S, YANG S, et al. A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization[J]. Energy & Environmental Science, 2017, 10(8): 1746-1750. [15] JEON S I, PARK H R, YEO J G, et al. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J]. Energy & Environmental Science, 2013, 6(5): 1471-1475. [16] 雍天智, 李阳, 陆建刚, 等. 流动电极电容去离子技术研究进展[J]. 工业水处理, 2023, 43(1): 17-25. [17] 莫恒亮, 唐阳, 陈咏梅, 等. 流动电极电吸附(FCDI)与电渗析(ED))耦合实现连续脱盐技术研究[J]. 现代化工, 2019, 39(5): 91-95. [18] 杨宏艳, 张卫珂, 葛坤, 等. 流动性电极电容去离子技术的脱盐性能研究[J]. 环境污染与防治, 2017, 39(8): 911-919. [19] XU L, MAO Y, ZONG Y, et al. Membrane-current collector-based flow-electrode capacitive deionization system: A novel stack configuration for scale-up desalination[J]. Environmental Science & Technology, 2021, 55(19): 13286-13296. [20] YANG S, CHOI J, YEO J G, et al. Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration[J]. Environmental Science & Technology, 2016, 50(11): 5892-5899. [21] TANG K, ZHOU K. Water desalination by flow-electrode capacitive deionization in overlimiting current regimes[J]. Environmental Science & Technology, 2020, 54(9): 5853-5863. [22] ZHANG C, WU L, MA J, et al. Integrated flow-electrode capacitive deionization and microfiltration system for continuous and energy-efficient brackish water desalination[J]. Environmental Science & Technology, 2019, 53(22): 13364-13373. [23] MA J, ZHANG C, YANG F, et al. Carbon black flow electrode enhanced electrochemical desalination using single-cycle operation[J]. Environmental Science & Technology, 2020, 54(2): 1177-1185. [24] MA J, MA J, ZHANG C, et al. Water recovery rate in short-circuited closed-cycle operation of flow-electrode capacitive deionization (FCDI)[J]. Environmental Science & Technology, 2019, 53(23): 13859-13867. [25] HE C, MA J, ZHANG C, et al. Short-circuited closed-cycle operation of flow-electrode CDI for brackish water softening[J]. Environmental Science & Technology, 2018, 52(16): 9350-9360. [26] ZHANG C, MA J, WU L, et al. Flow electrode capacitive deionization (FCDI): Recent developments, environmental applications, and future perspectives[J]. Environmental Science & Technology, 2021, 55(8): 4243-4267. [27] DENNISON C R, GOGOTSI Y, KUMBUR E C. In situ distributed diagnostics of flowable electrode systems: resolving spatial and temporal limitations[J]. Physical Chemistry Chemical Physics, 2014, 16(34): 18241-18252. doi: 10.1039/C4CP02820A [28] HATZELL K B, HATZELL M C, COOK K M, et al. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization[J]. Environmental Science & Technology, 2015, 49(5): 3040-3047. [29] PARK H, CHOI J, YANG S, et al. Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization[J]. RSC Advances, 2016, 6(74): 69720-69727. doi: 10.1039/C6RA02480G [30] MA J, MA J, ZHANG C, et al. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration[J]. Water Research, 2020, 168: 115186. doi: 10.1016/j.watres.2019.115186 [31] MA J, HE C, HE D, et al. Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI[J]. Water Research, 2018, 144: 296-303. doi: 10.1016/j.watres.2018.07.049 [32] CHO Y, YOO C-Y, LEE S W, et al. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes[J]. Water Research, 2019, 151: 252-259. doi: 10.1016/j.watres.2018.11.080 [33] LIANG P, SUN X, BIAN Y, et al. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode[J]. Desalination, 2017, 420: 63-69. doi: 10.1016/j.desal.2017.05.023 [34] TANG K, YIACOUMI S, LI Y, et al. Enhanced water desalination by increasing the electroconductivity of carbon powders for high-performance flow-electrode capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1085-1094. [35] LUO L, HE Q, YI D, et al. Indirect charing of carbon by aqueous redox mediators contributes to the enhanced desalination performance in flow-electrode CDI[J]. Water Research, 2022, 220: 118688. doi: 10.1016/j.watres.2022.118688 [36] MA J, HE D, TANG W, et al. Development of redox-active flow electrodes for high-performance capacitive deionization[J]. Environmental Science & Technology, 2016, 50(24): 13495-13501. [37] TANG K, ZHENG H, DU P, et al. Simultaneous fractionation, desalination, and dye removal of dye/salt mixtures by carbon cloth-modified flow-electrode capacitive deionization[J]. Environmental Science & Technology, 2022, 56(12): 8885-8896. [38] CASTAÑEDA L F, WALSH F C, NAVA J L, et al. Graphite felt as a versatile electrode material: Properties, reaction environment, performance and applications[J]. Electrochimica Acta, 2017, 258: 1115-1139. doi: 10.1016/j.electacta.2017.11.165