[1] |
刘楚琛, 阎秀兰, 刘琼枝, 等. Fenton试剂和活化过硫酸钠氧化降解土壤中的二氯酚和三氯酚[J]. 环境工程学报, 2018, 12(6): 1749-1758.
|
[2] |
黄建新, 陈经浩, 陆胜勇, 等. GC-ECD和LC-MS/MS测定垃圾焚烧飞灰中氯苯和氯酚的方法[J]. 环境工程学报, 2017, 11(2): 1293-1299.
|
[3] |
吴文慧, 邓亚梅, 施维林, 等. 钒氧化物活化过硫酸钠降解2, 4, 6-三氯酚的机制[J]. 环境工程学报, 2017, 11(5): 3244-3250.
|
[4] |
钟少芬, 莫健文, 李阳苹, 等. 粉末活性炭对水中氯酚的吸附[J]. 环境工程学报, 2016, 10(6): 2927-2932.
|
[5] |
于荆, 黄力群, 刘承鸿, 等. 微生物燃料电池阴阳两级分步降解对氯酚效果[J]. 环境工程学报, 2017, 11(6): 3507-3510.
|
[6] |
LIU J, HAN D D, CHEN P J, et al. Positive roles of Br in g-C3N4/PTCDI-Br heterojunction for photocatalytic degrading chlorophenols[J]. Chemical Engineering Journal, 2021, 418:129492.
|
[7] |
DAVARI N, FARHADIAN M, NAZAR ARS, et al. Degradation of diphenhydramine by the photocatalysts of ZnO/Fe2O3 and TiO2/Fe2O3 based on clinoptilolite: Structural and operational comparison[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5707-5720. doi: 10.1016/j.jece.2017.10.052
|
[8] |
BABAEI A A, GOLSHAN M, KAKAVANDI B. A heterogeneous photocatalytic sulfate radical-based oxidation process for efficient degradation of 4-chlorophenol using TiO2 anchored on Fe oxides@carbon[J]. Process Safety and Environmental Protection, 2021, 149: 35-47. doi: 10.1016/j.psep.2020.10.028
|
[9] |
AHN Y-Y, BAE H, KIM H-I, et al. Surface-loaded metal nanoparticles for peroxymonosulfate activation: Efficiency and mechanism reconnaissance[J]. Applied Catalysis B:Environmental, 2019, 241: 561-569. doi: 10.1016/j.apcatb.2018.09.056
|
[10] |
谢怡俐, 楚芳, 张敏婷, 等. 芬顿铁泥组分解析及其对造纸废水厌氧处理的影响[J]. 环境工程学报, 2022, 16(11): 3579-3586.
|
[11] |
郑豪, 刘宇涛, 李爱民, 等. 封装型双金属阴极催化剂强化电芬顿技术高效去除磺胺甲恶唑[J]. 环境工程学报, 2022, 16(9): 2862-2873.
|
[12] |
XIE AT, CUI JY, YANG J, et al. Photo-Fenton self-cleaning membranes with robust flux recovery for an efficient oil/water emulsion separation[J]. Journal of Materials Chemistry A, 2019, 7(14): 8491-8502. doi: 10.1039/C9TA00521H
|
[13] |
VORONTSOV A V. Advancing Fenton and photo-Fenton water treatment through the catalyst design[J]. Journal of Hazardous Materials, 2019, 372: 103-112. doi: 10.1016/j.jhazmat.2018.04.033
|
[14] |
SU L N, WANG P F, MA X L, et al. Regulating local electron density of iron single sites by introducing nitrogen vacancies for efficient photo-Fenton process[J]. Angewandte Chemie-International Edition, 2021, 60(39): 21261-21266. doi: 10.1002/anie.202108937
|
[15] |
JIANG JJ, WANG XY, LIU Y, et al. Photo-Fenton degradation of emerging pollutants over Fe-POM nanoparticle/porous and ultrathin g-C3N4 nanosheet with rich nitrogen defect: Degradation mechanism, pathways, and products toxicity assessment[J]. Applied Catalysis B: Environmental, 2020, 278:119349.
|
[16] |
XU W, XUE W, HUANG H, et al. Morphology controlled synthesis of alpha-Fe2O3-x with benzimidazole-modified Fe-MOFs for enhanced photo-Fenton-like catalysis[J]. Applied Catalysis B: Environmental, 2021, 291:120129.
|
[17] |
LIU D, LI C, NI T, et al. 3D interconnected porous g-C3N4 hybridized with Fe2O3 quantum dots for enhanced photo-Fenton performance[J]. Applied Surface Science, 2021, 555:149677.
|
[18] |
GONG Q J, LIU Y, DANG Z. Core-shell structured Fe3O4@GO@MIL-100(Fe) magnetic nanoparticles as heterogeneous photo-Fenton catalyst for 2, 4-dichlorophenol degradation under visible light[J]. Journal of Hazardous Materials, 2019, 371: 677-686. doi: 10.1016/j.jhazmat.2019.03.019
|
[19] |
WANG Y X, RAO L, WANG P F, et al. Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment[J]. Applied Catalysis B: Environmental, 2020, 262:118308.
|
[20] |
SEN GUPTA S, STADLER M, NOSER C A, et al. Rapid total destruction of chlorophenols by activated hydrogen peroxide[J]. Science, 2002, 296(5566): 326-328. doi: 10.1126/science.1069297
|
[21] |
CZAPLICKA M. Photo-degradation of chlorophenols in the aqueous solution[J]. Journal of Hazardous Materials, 2006, 134(1/2/3): 45-59. doi: 10.1016/j.jhazmat.2005.10.039
|
[22] |
YANG G, LIANG Y J, XIONG Z R, et al. Molten salt-assisted synthesis of Ce4O7/Bi4MoO9 heterojunction photocatalysts for Photo-Fenton degradation of tetracycline: Enhanced mechanism, degradation pathway and products toxicity assessment[J]. Chemical Engineering Journal, 2021, 425:130689..
|
[23] |
YAN HX, PAN YS, LIAO XB, et al. Enhancement of Fe2+/Fe3+ cycles by the synergistic effect between photocatalytic and co-catalytic of ZnxCd1-xS on photo-Fenton system[J]. Applied Surface Science, 2022, 576:152464.
|
[24] |
LIN X Q, LI Z L, LIANG B, et al. Accelerated microbial reductive dechlorination of 2, 4, 6-trichlorophenol by weak electrical stimulation[J]. Water Research, 2019, 162: 236-245. doi: 10.1016/j.watres.2019.06.068
|
[25] |
LI H, SHAN C, PAN B. Fe(III)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species[J]. Environmental Science & Technology, 2018, 52(4): 2197-2205.
|
[26] |
LOPEZ-VINENT N, CRUZ-ALCALDE A, GUTIERREZ C, et al. Micropollutant removal in real WW by photo-Fenton (circumneutral and acid pH) with BLB and LED lamps[J]. Chemical Engineering Journal, 2020, 379:122416.
|
[27] |
CHEN X, ZHANG M, QIN H W, et al. Synergy effect between adsorption and heterogeneous photo-Fenton-like catalysis on LaFeO(3/)lignin-biochar composites for high efficiency degradation of ofloxacin under visible light[J]. Separation and Purification Technology, 2022, 280:119751.
|
[28] |
CHEN Y, SU R D, WANG F D, et al. In-situ synthesis of CuS@carbon nanocomposites and application in enhanced photo-Fenton degradation of 2, 4-DCP[J]. Chemosphere, 2021, 270:129295..
|
[29] |
REN L, LU S Y, FANG J Z, et al. Enhanced degradation of organic pollutants using Bi25FeO40 microcrystals as an efficient reusable heterogeneous photo-Fenton like catalyst[J]. Catalysis Today, 2017, 281: 656-661. doi: 10.1016/j.cattod.2016.06.028
|