[1] DUAN J C, GUO S J, TAN J H, et al. Characteristics of atmospheric carbonyls during haze days in Beijing, China[J]. Atmospheric Research, 2012, 114/115: 17-27. doi: 10.1016/j.atmosres.2012.05.010
[2] CHENG Y, LEE S C, HUANG Y, et al. Diurnal and seasonal trends of carbonyl compounds in roadside, urban, and suburban environment of Hong Kong[J]. Atmospheric Environment, 2014, 89: 43-51. doi: 10.1016/j.atmosenv.2014.02.014
[3] QU H, WANG Y H, ZHANG R X, et al. Chemical production of oxygenated volatile organic compounds strongly enhances boundary-layer oxidation chemistry and ozone production[J]. Environmental Science & Technology, 2021, 55(20): 13718-13727.
[4] HE Z, ZHANG X, LI Y F, et al. Characterizing carbonyl compounds and their sources in Fuzhou ambient air, southeast of China[J]. Peer J, 2020, 8: e10227. doi: 10.7717/peerj.10227
[5] LI J Y, XIE X D, LI L, et al. Fate of oxygenated volatile organic compounds in the Yangtze River Delta region: Source contributions and impacts on the atmospheric oxidation capacity[J]. Environmental Science & Technology, 2022, 56(16): 11212-11224.
[6] HUANG X F, ZHANG B, XIA S Y, et al. Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in North and South China[J]. Environmental Pollution, 2020, 261: 114152. doi: 10.1016/j.envpol.2020.114152
[7] YANG X, ZHANG G Q, SUN Y M, et al. Explicit modeling of background HCHO formation in Southern China[J]. Atmospheric Research, 2020, 240: 104941. doi: 10.1016/j.atmosres.2020.104941
[8] LIU Q, GAO Y, HUANG W W, et al. Carbonyl compounds in the atmosphere: A review of abundance, source and their contributions to O3 and SOA formation[J]. Atmospheric Research, 2022, 274: 106184. doi: 10.1016/j.atmosres.2022.106184
[9] MO Z W, HUANG S, YUAN B, et al. Tower-based measurements of NMHCs and OVOCs in the Pearl River Delta: Vertical distribution, source analysis and chemical reactivity[J]. Environmental Pollution, 2022, 292(Pt B): 118454.
[10] YANG X, XUE L K, YAO L, et al. Carbonyl compounds at Mount Tai in the North China Plain: Characteristics, sources, and effects on ozone formation[J]. Atmospheric Research, 2017, 196: 53-61. doi: 10.1016/j.atmosres.2017.06.005
[11] XUE L K, GU R R, WANG T, et al. Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: Analysis of a severe photochemical smog episode[J]. Atmospheric Chemistry and Physics, 2016, 16(15): 9891-9903. doi: 10.5194/acp-16-9891-2016
[12] SHEN H Q, LIU Y H, ZHAO M, et al. Significance of carbonyl compounds to photochemical ozone formation in a coastal city (Shantou) in Eastern China[J]. The Science of the Total Environment, 2021, 764: 144031. doi: 10.1016/j.scitotenv.2020.144031
[13] 杨雪, 安馨悦, 刘玉启, 等. 山东临沂大气夏季典型时段臭氧污染特征及其控制因素分析[J]. 环境科学, 2022, 43(2): 696-706. YANG X, AN X Y, LIU Y Q, et al. Pollution characteristic and control factor analysis of atmospheric ozone during summer typical periods in Linyi, Shandong[J]. Environmental Science, 2022, 43(2): 696-706 (in Chinese).
[14] 丁萌萌, 周健楠, 常淼, 等. 北京大气中醛酮化合物污染特征与来源分析[J]. 环境科学研究, 2023, 36(6): 1095-1106. DING M M, ZHOU J N, CHANG M, et al. Pollution characterization and source analysis of carbonyls in ambient air in Beijing[J]. Research of Environmental Sciences, 2023, 36(6): 1095-1106 (in Chinese).
[15] GENG C M, LI S J, YIN B H, et al. Atmospheric carbonyl compounds in the central Taklimakan Desert in summertime: Ambient levels, composition and sources[J]. Atmosphere, 2022, 13(5): 761. doi: 10.3390/atmos13050761
[16] YANG Z, CHENG H R, WANG Z W, et al. Chemical characteristics of atmospheric carbonyl compounds and source identification of formaldehyde in Wuhan, Central China[J]. Atmospheric Research, 2019, 228: 95-106. doi: 10.1016/j.atmosres.2019.05.020
[17] WU Y Z, HUO J T, YANG G, et al. Measurement report: Production and loss of atmospheric formaldehyde at a suburban site of Shanghai in summertime[J]. Atmospheric Chemistry and Physics, 2023, 23(5): 2997-3014. doi: 10.5194/acp-23-2997-2023
[18] YANG X E, CHENG X A, YAN H Z, et al. Ground-level ozone production over an industrial cluster of China: A box model analysis of a severe photochemical pollution episode[J]. Polish Journal of Environmental Studies, 2022, 31(2): 1885-1899. doi: 10.15244/pjoes/143253
[19] WANG Y, WANG H, GUO H, et al. Long-term O3–precursor relationships in Hong Kong: Field observation and model simulation[J]. Atmospheric Chemistry and Physics, 2017, 17(18): 10919-10935. doi: 10.5194/acp-17-10919-2017
[20] LIU T T, CHEN G J, CHEN J S, et al. Seasonal characteristics of atmospheric peroxyacetyl nitrate (PAN) in a coastal city of Southeast China: Explanatory factors and photochemical effects[J]. Atmospheric Chemistry and Physics, 2022, 22(7): 4339-4353. doi: 10.5194/acp-22-4339-2022
[21] LIU X F, GUO H, ZENG L W, et al. Photochemical ozone pollution in five Chinese megacities in summer 2018[J]. The Science of the Total Environment, 2021, 801: 149603. doi: 10.1016/j.scitotenv.2021.149603
[22] XUE M, MA J Z, TANG G Q, et al. ROx budgets and O3 formation during summertime at Xianghe suburban site in the North China plain[J]. Advances in Atmospheric Sciences, 2021, 38(7): 1209-1222. doi: 10.1007/s00376-021-0327-4
[23] ZHANG G, XU H H, WANG H L, et al. Exploring the inconsistent variations in atmospheric primary and secondary pollutants during the 2016 G20 summit in Hangzhou, China: Implications from observations and models[J]. Atmospheric Chemistry and Physics, 2020, 20(9): 5391-5403. doi: 10.5194/acp-20-5391-2020
[24] 孙晓艳, 赵敏, 申恒青, 等. 济南市城区夏季臭氧污染过程及来源分析[J]. 环境科学, 2022, 43(2): 686-695. SUN X Y, ZHAO M, SHEN H Q, et al. Ozone formation and key VOCs of a continuous summertime O3 pollution event in ji’nan[J]. Environmental Science, 2022, 43(2): 686-695 (in Chinese).
[25] 韩丽, 陈军辉, 姜涛, 等. 成都市春季O3污染特征及关键前体物识别[J]. 环境科学, 2021, 42(10): 4611-4620. HAN L, CHEN J H, JIANG T, et al. Characteristics of O3 pollution and key precursors in Chengdu during spring[J]. Environmental Science, 2021, 42(10): 4611-4620 (in Chinese).
[26] CHEN T S, ZHENG P G, ZHANG Y N, et al. Characteristics and formation mechanisms of atmospheric carbonyls in an oilfield region of Northern China[J]. Atmospheric Environment, 2022, 274: 118958. doi: 10.1016/j.atmosenv.2022.118958
[27] SUN J Y, HE Y J, NING Y, et al. Pollution characteristics and sources of carbonyl compounds in a typical city of Fenwei Plain, Linfen, in summer[J]. Environmental Pollution, 2023, 320: 120913. doi: 10.1016/j.envpol.2022.120913
[28] JIANG Z H, GROSSELIN B, DAËLE V, et al. Seasonal, diurnal and nocturnal variations of carbonyl compounds in the semi-urban environment of Orléans, France[J]. Journal of Environmental Sciences, 2016, 40: 84-91. doi: 10.1016/j.jes.2015.11.016
[29] LIU S, BARLETTA B, HORNBROOK R S, et al. Composition and reactivity of volatile organic compounds in the South Coast Air Basin and San Joaquin Valley of California[J]. Atmospheric Chemistry and Physics, 2022, 22(16): 10937-10954. doi: 10.5194/acp-22-10937-2022
[30] VICHI F, IMPERIALI A, FRATTONI M, et al. Air pollution survey across the western Mediterranean Sea: Overview on oxygenated volatile hydrocarbons (OVOCs) and other gaseous pollutants[J]. Environmental Science and Pollution Research International, 2019, 26(16): 16781-16799. doi: 10.1007/s11356-019-04916-6
[31] 庞晓蝶, 高博, 陈来国, 等. 湛江市夏季大气挥发性有机物污染特征及来源解析[J]. 环境科学, 2023, 44(5): 2461-2471. PANG X D, GAO B, CHEN L G, et al. Characteristics and source apportionment of volatile organic compounds in Zhanjiang in summer[J]. Environmental Science, 2023, 44(5): 2461-2471 (in Chinese).
[32] ZHOU Z H, TAN Q W, DENG Y, et al. Source profiles and reactivity of volatile organic compounds from anthropogenic sources of a megacity in southwest China[J]. The Science of the Total Environment, 2021, 790: 148149. doi: 10.1016/j.scitotenv.2021.148149
[33] 张盛华, 吕柏霖, 孙亚刚, 等. 西安西南郊“夏防期”大气VOCs污染特征及来源解析[J]. 环境科学学报, 2022, 42(9): 364-371. ZHANG S H, LÜ B L, SUN Y G, et al. Analysis of atmospheric VOCS pollution characteristics and sources in the southwest suburbs of Xi’an during the “summer prevention period”[J]. Acta Scientiae Circumstantiae, 2022, 42(9): 364-371 (in Chinese).
[34] HUANG X F, WANG C, ZHU B, et al. Exploration of sources of OVOCs in various atmospheres in Southern China[J]. Environmental Pollution, 2019, 249: 831-842. doi: 10.1016/j.envpol.2019.03.106
[35] QIAN X, SHEN H Q, CHEN Z M. Characterizing summer and winter carbonyl compounds in Beijing atmosphere[J]. Atmospheric Environment, 2019, 214: 116845. doi: 10.1016/j.atmosenv.2019.116845
[36] PENG C Y, YANG H H, LAN C H, et al. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust[J]. Atmospheric Environment, 2008, 42(5): 906-915. doi: 10.1016/j.atmosenv.2007.10.016
[37] MAJI S, YADAV R, BEIG G, et al. On the processes governing the variability of PTR-MS based VOCs and OVOCs in different seasons of a year over hillocky mega city of India[J]. Atmospheric Research, 2021, 261: 105736. doi: 10.1016/j.atmosres.2021.105736
[38] WANG B L, LI Z A, LIU Z G, et al. Characteristics, secondary transformation potential and health risks of atmospheric volatile organic compounds in an industrial area in Zibo, east China[J]. Atmosphere, 2023, 14(1): 158. doi: 10.3390/atmos14010158
[39] LI Y, SHAO M, LU S H, et al. Variations and sources of ambient formaldehyde for the 2008 Beijing Olympic games[J]. Atmospheric Environment, 2010, 44(21/22): 2632-2639.
[40] HUANG Y, LI X R, CHEN X, et al. Low-molecular-weight carbonyl volatile organic compounds on the North China Plain[J]. Atmospheric Environment, 2022, 275: 119000. doi: 10.1016/j.atmosenv.2022.119000
[41] WANG C, HUANG X F, HAN Y, et al. Sources and potential photochemical roles of formaldehyde in an urban atmosphere in South China[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(21): 11934-11947.
[42] WANG M, CHEN W T, SHAO M, et al. Investigation of carbonyl compound sources at a rural site in the Yangtze River Delta region of China[J]. Journal of Environmental Sciences, 2015, 28: 128-136. doi: 10.1016/j.jes.2014.12.001
[43] YUAN B, CHEN W T, SHAO M, et al. Measurements of ambient hydrocarbons and carbonyls in the Pearl River Delta (PRD), China[J]. Atmospheric Research, 2012, 116: 93-104. doi: 10.1016/j.atmosres.2012.03.006
[44] 胡崑, 王鸣, 王红丽, 等. 基于PMF和源示踪物比例法的大气羰基化合物来源解析: 以南京市观测为例[J]. 环境科学, 2021, 42(1): 45-54. HU K, WANG M, WANG H L, et al. Source apportionment of ambient carbonyl compounds based on a PMF and source tracer ratio method: A case based on observations in Nanjing[J]. Environmental Science, 2021, 42(1): 45-54 (in Chinese).
[45] MILLET D B, DONAHUE N M, PANDIS S N, et al. Atmospheric volatile organic compound measurements during the Pittsburgh Air Quality Study: Results, interpretation, and quantification of primary and secondary contributions[J]. Journal of Geophysical Research:Atmospheres, 2005, 110(D7): D07S07.
[46] YANG X, XUE L K, WANG T, et al. Observations and explicit modeling of summertime carbonyl formation in Beijing: Identification of key precursor species and their impact on atmospheric oxidation chemistry[J]. Journal of Geophysical Research:Atmospheres, 2018, 123(2): 1426-1440. doi: 10.1002/2017JD027403
[47] LI Z Y, XUE L K, YANG X, et al. Oxidizing capacity of the rural atmosphere in Hong Kong, Southern China[J]. Science of the Total Environment, 2018, 612: 1114-1122. doi: 10.1016/j.scitotenv.2017.08.310
[48] LIU T T, HONG Y W, LI M R, et al. Atmospheric oxidation capacity and ozone pollution mechanism in a coastal city of southeastern China: Analysis of a typical photochemical episode by an observation-based model[J]. Atmospheric Chemistry and Physics, 2022, 22(3): 2173-2190. doi: 10.5194/acp-22-2173-2022
[49] LIU Y, YUAN B, LI X, et al. Impact of pollution controls in Beijing on atmospheric oxygenated volatile organic compounds (OVOCs) during the 2008 Olympic Games: Observation and modeling implications[J]. Atmospheric Chemistry and Physics, 2015, 15(6): 3045-3062. doi: 10.5194/acp-15-3045-2015
[50] WHALLEY L K, STONE D, BANDY B, et al. Atmospheric OH reactivity in central London: Observations, model predictions and estimates of in situ ozone production[J]. Atmospheric Chemistry and Physics, 2016, 16(4): 2109-2122. doi: 10.5194/acp-16-2109-2016