Beelen R, Raaschou-Nielsen O, Stafoggia M, et al. Effects of long-term exposure to air pollution on natural-cause mortality:An analysis of 22 European cohorts within the multicentre ESCAPE project[J]. Lance, 2014, 383(9919):785-795
Langrish J P, Mills N L. Air pollution and mortality in Europe[J]. Lancet, 2014, 383(9919):758-760
Shah A S, Langrish J P, Nair H, et al. Global association of air pollution and heart failure:A systematic review and meta-analysis[J]. Lancet, 2013, 382(9897):1039-1048
Figueres C, Landrigan P J, Fuller R. Tackling air pollution, climate change, and NCDs:Time to pull together[J]. Lancet, 2018, 392(10157):1502-1503
Lelieveld J, Evans J S, Fnais M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale[J]. Nature, 2015, 525(7569):367-371
Niu Y, Chen R J, Kan H D. Air pollution, disease burden, and health economic loss in China[J]. Advances in Experimental Medicine and Biology, 2017, 1017:233-242
Kuhn D M, Ghannoum M A. Indoor mold, toxigenic fungi, and Stachybotrys chartarum:Infectious disease perspective[J]. Clinical Microbiology Reviews, 2003, 16(1):144-172
Wu Y S, Fang G C, Fu P P, et al. The measurements of ambient particulates (TSP, PM2.5, PM2.5-10), chemical component concentration variation, and mutagenicity study during 1998-2001 in central Taiwan[J]. Journal of Environmental Science and Health Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 2002, 20(1):45-59
Aguilera I, Eeftens M, Meier R, et al. Land use regression models for crustal and traffic-related PM2.5 constituents in four areas of the SAPALDIA study[J]. Environmental Research, 2015, 140:377-384
Estillore A D, Trueblood J V, Grassian V H. Atmospheric chemistry of bioaerosols:Heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases[J]. Chemical Science, 2016, 7(11):6604-6616
Jaenicke R. Abundance of cellular material and proteins in the atmosphere[J]. Science, 2005, 308(5718):73
An J L, Cao Q M, Zou J N, et al. Seasonal variation in water-soluble ions in airborne particulate deposition in the suburban Nanjing area, Yangtze River Delta, China, during haze days and normal days[J]. Archives of Environmental Contamination and Toxicology, 2018, 74(1):1-15
Bi C L, Chen Y T, Zhao Z Z, et al. Characteristics, sources and health risks of toxic species (PCDD/Fs, PAHs and heavy metals) in PM2.5 during fall and winter in an industrial area[J]. Chemosphere, 2020, 238:124620
Groulx N, Urch B, Duchaine C, et al. The Pollution Particulate Concentrator (PoPCon):A platform to investigate the effects of particulate air pollutants on viral infectivity[J]. Science of the Total Environment, 2018, 628-629:1101-1107
Li M F, Qi J H, Zhang H D, et al. Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region[J]. Science of the Total Environment, 2011, 409(19):3812-3819
Cao C, Jiang W J, Wang B Y, et al. Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event[J]. Environmental Science & Technology, 2014, 48(3):1499-1507
宫静, 祁建华, 李鸿涛. 青岛近海生物气溶胶中总微生物的分布特征[J]. 环境科学, 2019, 40(8):3477-3488 Gong J, Qi J H, Li H T. Distribution of total microbes in atmospheric bioaerosols in the coastal region of Qingdao[J]. Environmental Science, 2019, 40(8):3477-3488(in Chinese)
Moon K W, Huh E H, Jeong H C. Seasonal evaluation of bioaerosols from indoor air of residential apartments within the metropolitan area in South Korea[J]. Environmental Monitoring and Assessment, 2014, 186(4):2111-2120
孟祥斌, 李孟哲, 李鸿涛, 等. 青岛近海冬季大气生物气溶胶中微生物活性研究[J]. 环境科学, 2016, 37(11):4147-4155 Meng X B, Li M Z, Li H T, et al. Microbial activity in bioaerosols in winter at the coastal region of Qingdao[J]. Environmental Science, 2016, 37(11):4147-4155(in Chinese)
Zhao Y, Richardson B, Takle E, et al. Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States[J]. Scientific Reports, 2019, 9(1):11755
Xu H, Yan C H, Fu Q Y, et al. Possible environmental effects on the spread of COVID-19 in China[J]. Science of the Total Environment, 2020, 731:139211
Gandolfi I, Bertolini V, Bestetti G, et al. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas[J]. Applied Microbiology and Biotechnology, 2015, 99(11):4867-4877
Lowen A C, Mubareka S, Steel J, et al. Influenza virus transmission is dependent on relative humidity and temperature[J]. PLoS Pathogens, 2007, 3(10):1470-1476
Stanier C O, Khlystov A Y, Chan W R, et al. A method for the in situ measurement of fine aerosol water content of ambient aerosols:The dry-ambient aerosol size spectrometer (DAASS)[J]. Aerosol Science and Technology, 2004, 38:215-228
Després V, Huffman J A, Burrows S M, et al. Primary biological aerosol particles in the atmosphere:A review[J]. Tellus B:Chemical and Physical Meteorology, 2012, 64(1):15598
Setti L, Passarini F, de Gennaro G, et al. Airborne transmission route of COVID-19:Why 2 meters/6 feet of inter-personal distance could not be enough[J]. International Journal of Environmental Research and Public Health, 2020, 17(8):E2932
Zhang J, Li Y, Xu E, et al. Bacterial communities in PM2.5 and PM10 in broiler houses at different broiler growth stages in spring[J]. Polish Journal of Veterinary Sciences, 2019, 22(3):495-504
Yamaguchi N, Ichijo T, Sakotani A, et al. Global dispersion of bacterial cells on Asian dust[J]. Scientific Reports, 2012, 2:525
Qi Y Z, Li Y P, Xie W W, et al. Temporal-spatial variations of fungal composition in PM2.5 and source tracking of airborne fungi in mountainous and urban regions[J]. Science of the Total Environment, 2020, 708:135027
Franklin C. Residential exposure assessment, a sourcebook[J]. Risk Analysis, 2005, 25(3):778-779
Ljubimova J Y, Braubach O, Patil R, et al. Coarse particulate matter (PM 2.5-10) in Los Angeles Basin air induces expression of inflammation and cancer biomarkers in rat brains[J]. Scientific Reports, 2018, 8:5708
Tellier R. Aerosol transmission of influenza A virus:A review of new studies[J]. Journal of the Royal Society, Interface, 2009, 6(Suppl 6):S783-S790
Mayol E, Jiménez M A, Herndl G J, et al. Corrigendum:Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean[J]. Frontiers in Microbiology, 2017, 8:1971
Mayol E, Arrieta J M, Jiménez M A, et al. Long-range transport of airborne microbes over the global tropical and subtropical ocean[J]. Nature Communications, 2017, 8(1):201
Reche I, D'Orta G, Mladenov N, et al. Deposition rates of viruses and bacteria above the atmospheric boundary layer[J]. The ISME Journal, 2018, 12(4):1154-1162
Khot W Y, Nadkar M Y. The 2019 novel coronavirus outbreak-A global threat[J]. The Journal of the Association of Physicians of India, 2020, 68(3):67-71
Liu Y, Ning Z, Chen Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals[J]. Nature, 2020, 582(7813):557-560
Setti L, Passarini F, de Gennaro G, et al. SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy:First evidence[J]. Environmental Research, 2020, 188:109754
Zoran M A, Savastru R S, Savastru D M, et al. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy[J]. Science of the Total Environment, 2020, 738:139825
van Doremalen N, Bushmaker T, Morris D H, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1[J]. The New England Journal of Medicine, 2020, 382(16):1564-1567
Matus C P, Oyarzún G M. Impact of particulate matter (PM2.5) and children's hospitalizations for respiratory diseases. A case cross-over study[J]. Revista Chilena De Pediatria, 2019, 90(2):166-174
Horne B D, Joy E A, Hofmann M G, et al. Short-term elevation of fine particulate matter air pollution and acute lower respiratory infection[J]. American Journal of Respiratory and Critical Care Medicine, 2018, 198(6):759-766
Liu X X, Li Y P, Qin G Y, et al. Effects of air pollutants on occurrences of influenza-like illness and laboratory-confirmed influenza in Hefei, China[J]. International Journal of Biometeorology, 2019, 63(1):51-60
Li L, Liu H, Wang Y, et al. Construction of a nomogram for predicting the risk of allergic rhinitis among employees of long-distance bus stations in China[J]. Indoor Air, 2020, 30(6):1178-1188
Hassard F, Gwyther C L, Farkas K, et al. Abundance and distribution of enteric bacteria and viruses in coastal and estuarine sediments-A review[J]. Frontiers in Microbiology, 2016, 7:1692
Thurston-Enriquez J A, Haas C N, Jacangelo J, et al. Chlorine inactivation of adenovirus type 40 and feline calicivirus[J]. Applied and Environmental Microbiology, 2003, 69(7):3979-3985
Gerba C P, Betancourt W Q. Viral aggregation:Impact on virus behavior in the environment[J]. Environmental Science & Technology, 2017, 51(13):7318-7325
Narang H K, Codd A A. Frequency of preclumped virus in routine fecal specimens from patients with acute nonbacterial gastroenteritis[J]. Journal of Clinical Microbiology, 1981, 13(5):982-988
Kahler A M, Cromeans T L, Metcalfe M G, et al. Aggregation of adenovirus 2 in source water and impacts on disinfection by chlorine[J]. Food and Environmental Virology, 2016, 8(2):148-155
Waldman P, Lucas F S, Varrault G, et al. Hydrophobic organic matter promotes coxsackievirus B5 stabilization and protection from heat[J]. Food and Environmental Virology, 2020, 12(2):118-129
Esseili M A, Wang Q H, Saif L J. Binding of human GII.4 Norovirus virus-like particles to carbohydrates of romaine lettuce leaf cell wall materials[J]. Applied and Environmental Microbiology, 2012, 78(3):786-794
Berger A K, Yi H, Kearns D B, et al. Bacteria and bacterial envelope components enhance mammalian reovirus thermostability[J]. PLoS Pathogens, 2017, 13(12):e1006768
Weinbauer M G, Bettarel Y, Cattaneo R, et al. Viral ecology of organic and inorganic particles in aquatic systems:Avenues for further research[J]. Aquatic Microbial Ecology:International Journal, 2009, 57(3):321-341
Hu J L, Zhao F Z, Zhang X X, et al. Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event[J]. Science of the Total Environment, 2018, 615:1332-1340
Xie J W, Jin L, Luo X S, et al. Seasonal disparities in airborne bacteria and associated antibiotic resistance genes in PM2.5 between urban and rural sites[J]. Environmental Science & Technology Letters, 2018, 5(2):74-79
Li J, Cao J J, Zhu Y G, et al. Global survey of antibiotic resistance genes in air[J]. Environmental Science & Technology, 2018, 52(19):10975-10984
Martínez J L, Coque T M, Baquero F. What is a resistance gene? Ranking risk in resistomes[J]. Nature Reviews Microbiology, 2015, 13(2):116-123
Levy S B, FitzGerald G B, Macone A B. Spread of antibiotic-resistant plasmids from chicken to chicken and from chicken to man[J]. Nature, 1976, 260(5546):40-42
Zhu Y G, Zhao Y, Li B, et al. Continental-scale pollution of estuaries with antibiotic resistance genes[J]. Nature Microbiology, 2017, 2:16270
Li L Y, Wang Q, Bi W J, et al. Municipal solid waste treatment system increases ambient airborne bacteria and antibiotic resistance genes[J]. Environmental Science & Technology, 2020, 54(7):3900-3908
Knapp C W, McCluskey S M, Singh B K, et al. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils[J]. PLoS One, 2011, 6(11):e27300
Hussey S J K, Purves J, Allcock N, et al. Air pollution alters Staphylococcus aureus and Streptococcus pneumoniae biofilms, antibiotic tolerance and colonization[J]. Environmental Microbiology, 2017, 19(5):1868-1880
Wu W X, Zhang W, Duggan E S, et al. RIG-I and TLR3 are both required for maximum interferon induction by influenza virus in human lung alveolar epithelial cells[J]. Virology, 2015, 482:181-188
Platanias L C, Uddin S, Domanski P, et al. Differences in interferon alpha and beta signaling. Interferon beta selectively induces the interaction of the alpha and betaL subunits of the type I interferon receptor[J]. The Journal of Biological Chemistry, 1996, 271(39):23630-23633
Perng Y C, Lenschow D J. ISG15 in antiviral immunity and beyond[J]. Nature Reviews Microbiology, 2018, 16(7):423-439
Li S, Zhu M Z, Pan R G, et al. The tumor suppressor PTEN has a critical role in antiviral innate immunity[J]. Nature Immunology, 2016, 17(3):241-249
Ma J H, Song S H, Guo M, et al. Long-term exposure to PM2.5 lowers influenza virus resistance via down-regulating pulmonary macrophage Kdm6a and mediates histones modification in IL-6 and IFN-β promoter regions[J]. Biochemical and Biophysical Research Communications, 2017, 493(2):1122-1128
Dolci M, Favero C, Bollati V, et al. Particulate matter exposure increases JC polyomavirus replication in the human host[J]. Environmental Pollution, 2018, 241:234-239
Wu J, Zhu K H, Luo X L, et al. PM2.5 promotes replication of VSV by ubiquitination degradation of phospho-IRF3 in A549 cells[J]. Toxicology in Vitro, 2020, 62:104698
Xie Y Q, Zhang X, Tian Z Y, et al. Preexposure to PM2.5 exacerbates acute viral myocarditis associated with Th17 cell[J]. International Journal of Cardiology, 2013, 168(4):3837-3845
Lambert A L, Trasti F S, Mangum J B, et al. Effect of preexposure to ultrafine carbon black on respiratory syncytial virus infection in mice[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2003, 72(2):331-338
Neville L F, Mathiak G, Bagasra O. The immunobiology of interferon-gamma inducible protein 10 kD (IP-10):A novel, pleiotropic member of the C-X-C chemokine superfamily[J]. Cytokine & Growth Factor Reviews, 1997, 8(3):207-219
Clifford H D, Perks K L, Zosky G R. Geogenic PM10 exposure exacerbates responses to influenza infection[J]. Science of the Total Environment, 2015, 533:275-282
Weiss G, Fuchs D, Hausen A, et al. Iron modulates interferon-gamma effects in the human myelomonocytic cell line THP-1[J]. Experimental Hematology, 1992, 20(5):605-610
Fan Y, Bergmann A. The cleaved-Caspase-3 antibody is a marker of Caspase-9-like DRONC activity in Drosophila[J]. Cell Death & Differentiation, 2010, 17(3):534-539
Zhou T, Hu Y, Wang Y X, et al. Fine particulate matter (PM2.5) aggravates apoptosis of cigarette-inflamed bronchial epithelium in vivo and vitro[J]. Environmental Pollution, 2019, 248:1-9
Koyama A H. Induction of apoptotic DNA fragmentation by the infection of vesicular stomatitis virus[J]. Virus Research, 1995, 37(3):285-290
Ritchie A I, Farne H A, Singanayagam A, et al. Pathogenesis of viral infection in exacerbations of airway disease[J]. Annals of the American Thoracic Society, 2015, 12(Suppl 2):S115-S132
Bakshi S, Taylor J, Strickson S, et al. Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon Β[J]. The Biochemical Journal, 2017, 474(7):1163-1174
Li X, Zhang Q, Shi Q Z, et al. Demethylase Kdm6a epigenetically promotes IL-6 and IFN-β production in macrophages[J]. Journal of Autoimmunity, 2017, 80:85-94
Granum B, Gaarder P I, Groeng E, et al. Fine particles of widely different composition have an adjuvant effect on the production of allergen-specific antibodies[J]. Toxicology Letters, 2001, 118(3):171-181
Zhao J Z, Xie Y Q, Qian C Y, et al. Imbalance of Th1 and Th2 cells in cardiac injury induced by ambient fine particles[J]. Toxicology Letters, 2012, 208(3):225-231
Szabo S J, Kim S T, Costa G L, et al. A novel transcription factor, T-bet, directs Th1 lineage commitment[J]. Cell, 2000, 100(6):655-669
Kaplan M H, Schindler U, Smiley S T, et al. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells[J]. Immunity, 1996, 4(3):313-319
Zheng W, Flavell R A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells[J]. Cell, 1997, 89(4):587-596
Afzali B, Lombardi G, Lechler R I, et al. The role of T helper 17(Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease[J]. Clinical and Experimental Immunology, 2007, 148(1):32-46
Larcombe A N, Foong R E, Boylen C E, et al. Acute diesel exhaust particle exposure increases viral titre and inflammation associated with existing influenza infection, but does not exacerbate deficits in lung function[J]. Influenza and Other Respiratory Viruses, 2013, 7(5):701-709
Salim S Y, Jovel J, Wine E, et al. Exposure to ingested airborne pollutant particulate matter increases mucosal exposure to bacteria and induces early onset of inflammation in neonatal IL-10-deficient mice[J]. Inflammatory Bowel Diseases, 2014, 20(7):1129-1138
Douwes J, Siebers R, Wouters I, et al. Endotoxin, (1->3)-beta-D-glucans and fungal extra-cellular polysaccharides in New Zealand homes:A pilot study[J]. Annals of Agricultural and Environmental Medicine, 2006, 13(2):361-365
Johanning E, Biagini R, Hull D, et al. Health and immunology study following exposure to toxigenic fungi (Stachybotrys chartarum) in a water-damaged office environment[J]. International Archives of Occupational and Environmental Health, 1996, 68(4):207-218
Robbins C A, Swenson L J, Nealley M L, et al. Health effects of mycotoxins in indoor air:A critical review[J]. Applied Occupational and Environmental Hygiene, 2000, 15(10):773-784
Cabral J P. Can we use indoor fungi as bioindicators of indoor air quality? Historical perspectives and open questions[J]. Science of the Total Environment, 2010, 408(20):4285-4295
Mensah-Attipoe J, Saari S, Veijalainen A M, et al. Release and characteristics of fungal fragments in various conditions[J]. Science of the Total Environment, 2016, 547:234-243
Górny R L, Reponen T, Willeke K, et al. Fungal fragments as indoor air biocontaminants[J]. Applied and Environmental Microbiology, 2002, 68(7):3522-3531