大气颗粒物吸附的空气微生物毒性效应的研究进展

王健, 李慧敏, 邓晓蓓. 大气颗粒物吸附的空气微生物毒性效应的研究进展[J]. 生态毒理学报, 2021, 16(3): 66-77. doi: 10.7524/AJE.1673-5897.20200606001
引用本文: 王健, 李慧敏, 邓晓蓓. 大气颗粒物吸附的空气微生物毒性效应的研究进展[J]. 生态毒理学报, 2021, 16(3): 66-77. doi: 10.7524/AJE.1673-5897.20200606001
Wang Jian, Li Huimin, Deng Xiaobei. Toxicity of Inhalable Microorganisms Attached to PM2.5[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 66-77. doi: 10.7524/AJE.1673-5897.20200606001
Citation: Wang Jian, Li Huimin, Deng Xiaobei. Toxicity of Inhalable Microorganisms Attached to PM2.5[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 66-77. doi: 10.7524/AJE.1673-5897.20200606001

大气颗粒物吸附的空气微生物毒性效应的研究进展

    作者简介: 王健(1997-),男,学士,研究方向为大气污染物的健康风险评价,E-mail:2837985@sjtu.edu.cn
    通讯作者: 邓晓蓓, E-mail: dengxiaobei@shsmu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(21777099);上海交通大学公共卫生学院成果为导向本科生拔尖培育项目(16GWZY18)

  • 中图分类号: X171.5

Toxicity of Inhalable Microorganisms Attached to PM2.5

    Corresponding author: Deng Xiaobei, dengxiaobei@shsmu.edu.cn
  • Fund Project:
  • 摘要: 大气污染与人群健康关系的研究表明,灰霾天气中的大气颗粒物上附着有多种可吸入微生物,包括病毒、细菌和真菌。大气颗粒物中的部分有机物质能够与这些微生物相互作用,进而改变颗粒物上附着微生物的致病性和持久性。大气颗粒物及其所吸附的病原微生物来源广泛,种类繁多,并由于大气污染加重而越发显得重要。本文结合以往文献资料和新型冠状病毒肺炎的一些实验观察数据,综述了大气颗粒物附着的微生物种类、影响微生物存活的环境条件、与疾病流行的内在关系、大气颗粒物对所附着的可吸入微生物的影响和与疾病相关的毒性效应等5个方面,进一步为大气污染预防和控制措施提供思路和方法。
  • 加载中
  • Beelen R, Raaschou-Nielsen O, Stafoggia M, et al. Effects of long-term exposure to air pollution on natural-cause mortality:An analysis of 22 European cohorts within the multicentre ESCAPE project[J]. Lance, 2014, 383(9919):785-795
    Langrish J P, Mills N L. Air pollution and mortality in Europe[J]. Lancet, 2014, 383(9919):758-760
    Shah A S, Langrish J P, Nair H, et al. Global association of air pollution and heart failure:A systematic review and meta-analysis[J]. Lancet, 2013, 382(9897):1039-1048
    Figueres C, Landrigan P J, Fuller R. Tackling air pollution, climate change, and NCDs:Time to pull together[J]. Lancet, 2018, 392(10157):1502-1503
    Lelieveld J, Evans J S, Fnais M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale[J]. Nature, 2015, 525(7569):367-371
    Niu Y, Chen R J, Kan H D. Air pollution, disease burden, and health economic loss in China[J]. Advances in Experimental Medicine and Biology, 2017, 1017:233-242
    Kuhn D M, Ghannoum M A. Indoor mold, toxigenic fungi, and Stachybotrys chartarum:Infectious disease perspective[J]. Clinical Microbiology Reviews, 2003, 16(1):144-172
    Wu Y S, Fang G C, Fu P P, et al. The measurements of ambient particulates (TSP, PM2.5, PM2.5-10), chemical component concentration variation, and mutagenicity study during 1998-2001 in central Taiwan[J]. Journal of Environmental Science and Health Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 2002, 20(1):45-59
    Aguilera I, Eeftens M, Meier R, et al. Land use regression models for crustal and traffic-related PM2.5 constituents in four areas of the SAPALDIA study[J]. Environmental Research, 2015, 140:377-384
    Estillore A D, Trueblood J V, Grassian V H. Atmospheric chemistry of bioaerosols:Heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases[J]. Chemical Science, 2016, 7(11):6604-6616
    Jaenicke R. Abundance of cellular material and proteins in the atmosphere[J]. Science, 2005, 308(5718):73
    An J L, Cao Q M, Zou J N, et al. Seasonal variation in water-soluble ions in airborne particulate deposition in the suburban Nanjing area, Yangtze River Delta, China, during haze days and normal days[J]. Archives of Environmental Contamination and Toxicology, 2018, 74(1):1-15
    Bi C L, Chen Y T, Zhao Z Z, et al. Characteristics, sources and health risks of toxic species (PCDD/Fs, PAHs and heavy metals) in PM2.5 during fall and winter in an industrial area[J]. Chemosphere, 2020, 238:124620
    Groulx N, Urch B, Duchaine C, et al. The Pollution Particulate Concentrator (PoPCon):A platform to investigate the effects of particulate air pollutants on viral infectivity[J]. Science of the Total Environment, 2018, 628-629:1101-1107
    Li M F, Qi J H, Zhang H D, et al. Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region[J]. Science of the Total Environment, 2011, 409(19):3812-3819
    Cao C, Jiang W J, Wang B Y, et al. Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event[J]. Environmental Science & Technology, 2014, 48(3):1499-1507
    宫静, 祁建华, 李鸿涛. 青岛近海生物气溶胶中总微生物的分布特征[J]. 环境科学, 2019, 40(8):3477-3488

    Gong J, Qi J H, Li H T. Distribution of total microbes in atmospheric bioaerosols in the coastal region of Qingdao[J]. Environmental Science, 2019, 40(8):3477-3488(in Chinese)

    Moon K W, Huh E H, Jeong H C. Seasonal evaluation of bioaerosols from indoor air of residential apartments within the metropolitan area in South Korea[J]. Environmental Monitoring and Assessment, 2014, 186(4):2111-2120
    孟祥斌, 李孟哲, 李鸿涛, 等. 青岛近海冬季大气生物气溶胶中微生物活性研究[J]. 环境科学, 2016, 37(11):4147-4155

    Meng X B, Li M Z, Li H T, et al. Microbial activity in bioaerosols in winter at the coastal region of Qingdao[J]. Environmental Science, 2016, 37(11):4147-4155(in Chinese)

    Zhao Y, Richardson B, Takle E, et al. Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States[J]. Scientific Reports, 2019, 9(1):11755
    Xu H, Yan C H, Fu Q Y, et al. Possible environmental effects on the spread of COVID-19 in China[J]. Science of the Total Environment, 2020, 731:139211
    Gandolfi I, Bertolini V, Bestetti G, et al. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas[J]. Applied Microbiology and Biotechnology, 2015, 99(11):4867-4877
    Lowen A C, Mubareka S, Steel J, et al. Influenza virus transmission is dependent on relative humidity and temperature[J]. PLoS Pathogens, 2007, 3(10):1470-1476
    Stanier C O, Khlystov A Y, Chan W R, et al. A method for the in situ measurement of fine aerosol water content of ambient aerosols:The dry-ambient aerosol size spectrometer (DAASS)[J]. Aerosol Science and Technology, 2004, 38:215-228
    Després V, Huffman J A, Burrows S M, et al. Primary biological aerosol particles in the atmosphere:A review[J]. Tellus B:Chemical and Physical Meteorology, 2012, 64(1):15598
    Setti L, Passarini F, de Gennaro G, et al. Airborne transmission route of COVID-19:Why 2 meters/6 feet of inter-personal distance could not be enough[J]. International Journal of Environmental Research and Public Health, 2020, 17(8):E2932
    Zhang J, Li Y, Xu E, et al. Bacterial communities in PM2.5 and PM10 in broiler houses at different broiler growth stages in spring[J]. Polish Journal of Veterinary Sciences, 2019, 22(3):495-504
    Yamaguchi N, Ichijo T, Sakotani A, et al. Global dispersion of bacterial cells on Asian dust[J]. Scientific Reports, 2012, 2:525
    Qi Y Z, Li Y P, Xie W W, et al. Temporal-spatial variations of fungal composition in PM2.5 and source tracking of airborne fungi in mountainous and urban regions[J]. Science of the Total Environment, 2020, 708:135027
    Franklin C. Residential exposure assessment, a sourcebook[J]. Risk Analysis, 2005, 25(3):778-779
    Ljubimova J Y, Braubach O, Patil R, et al. Coarse particulate matter (PM 2.5-10) in Los Angeles Basin air induces expression of inflammation and cancer biomarkers in rat brains[J]. Scientific Reports, 2018, 8:5708
    Tellier R. Aerosol transmission of influenza A virus:A review of new studies[J]. Journal of the Royal Society, Interface, 2009, 6(Suppl 6):S783-S790
    Mayol E, Jiménez M A, Herndl G J, et al. Corrigendum:Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean[J]. Frontiers in Microbiology, 2017, 8:1971
    Mayol E, Arrieta J M, Jiménez M A, et al. Long-range transport of airborne microbes over the global tropical and subtropical ocean[J]. Nature Communications, 2017, 8(1):201
    Reche I, D'Orta G, Mladenov N, et al. Deposition rates of viruses and bacteria above the atmospheric boundary layer[J]. The ISME Journal, 2018, 12(4):1154-1162
    Khot W Y, Nadkar M Y. The 2019 novel coronavirus outbreak-A global threat[J]. The Journal of the Association of Physicians of India, 2020, 68(3):67-71
    Liu Y, Ning Z, Chen Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals[J]. Nature, 2020, 582(7813):557-560
    Setti L, Passarini F, de Gennaro G, et al. SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy:First evidence[J]. Environmental Research, 2020, 188:109754
    Zoran M A, Savastru R S, Savastru D M, et al. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy[J]. Science of the Total Environment, 2020, 738:139825
    van Doremalen N, Bushmaker T, Morris D H, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1[J]. The New England Journal of Medicine, 2020, 382(16):1564-1567
    Matus C P, Oyarzún G M. Impact of particulate matter (PM2.5) and children's hospitalizations for respiratory diseases. A case cross-over study[J]. Revista Chilena De Pediatria, 2019, 90(2):166-174
    Horne B D, Joy E A, Hofmann M G, et al. Short-term elevation of fine particulate matter air pollution and acute lower respiratory infection[J]. American Journal of Respiratory and Critical Care Medicine, 2018, 198(6):759-766
    Liu X X, Li Y P, Qin G Y, et al. Effects of air pollutants on occurrences of influenza-like illness and laboratory-confirmed influenza in Hefei, China[J]. International Journal of Biometeorology, 2019, 63(1):51-60
    Li L, Liu H, Wang Y, et al. Construction of a nomogram for predicting the risk of allergic rhinitis among employees of long-distance bus stations in China[J]. Indoor Air, 2020, 30(6):1178-1188
    Hassard F, Gwyther C L, Farkas K, et al. Abundance and distribution of enteric bacteria and viruses in coastal and estuarine sediments-A review[J]. Frontiers in Microbiology, 2016, 7:1692
    Thurston-Enriquez J A, Haas C N, Jacangelo J, et al. Chlorine inactivation of adenovirus type 40 and feline calicivirus[J]. Applied and Environmental Microbiology, 2003, 69(7):3979-3985
    Gerba C P, Betancourt W Q. Viral aggregation:Impact on virus behavior in the environment[J]. Environmental Science & Technology, 2017, 51(13):7318-7325
    Narang H K, Codd A A. Frequency of preclumped virus in routine fecal specimens from patients with acute nonbacterial gastroenteritis[J]. Journal of Clinical Microbiology, 1981, 13(5):982-988
    Kahler A M, Cromeans T L, Metcalfe M G, et al. Aggregation of adenovirus 2 in source water and impacts on disinfection by chlorine[J]. Food and Environmental Virology, 2016, 8(2):148-155
    Waldman P, Lucas F S, Varrault G, et al. Hydrophobic organic matter promotes coxsackievirus B5 stabilization and protection from heat[J]. Food and Environmental Virology, 2020, 12(2):118-129
    Esseili M A, Wang Q H, Saif L J. Binding of human GII.4 Norovirus virus-like particles to carbohydrates of romaine lettuce leaf cell wall materials[J]. Applied and Environmental Microbiology, 2012, 78(3):786-794
    Berger A K, Yi H, Kearns D B, et al. Bacteria and bacterial envelope components enhance mammalian reovirus thermostability[J]. PLoS Pathogens, 2017, 13(12):e1006768
    Weinbauer M G, Bettarel Y, Cattaneo R, et al. Viral ecology of organic and inorganic particles in aquatic systems:Avenues for further research[J]. Aquatic Microbial Ecology:International Journal, 2009, 57(3):321-341
    Hu J L, Zhao F Z, Zhang X X, et al. Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event[J]. Science of the Total Environment, 2018, 615:1332-1340
    Xie J W, Jin L, Luo X S, et al. Seasonal disparities in airborne bacteria and associated antibiotic resistance genes in PM2.5 between urban and rural sites[J]. Environmental Science & Technology Letters, 2018, 5(2):74-79
    Li J, Cao J J, Zhu Y G, et al. Global survey of antibiotic resistance genes in air[J]. Environmental Science & Technology, 2018, 52(19):10975-10984
    Martínez J L, Coque T M, Baquero F. What is a resistance gene? Ranking risk in resistomes[J]. Nature Reviews Microbiology, 2015, 13(2):116-123
    Levy S B, FitzGerald G B, Macone A B. Spread of antibiotic-resistant plasmids from chicken to chicken and from chicken to man[J]. Nature, 1976, 260(5546):40-42
    Zhu Y G, Zhao Y, Li B, et al. Continental-scale pollution of estuaries with antibiotic resistance genes[J]. Nature Microbiology, 2017, 2:16270
    Li L Y, Wang Q, Bi W J, et al. Municipal solid waste treatment system increases ambient airborne bacteria and antibiotic resistance genes[J]. Environmental Science & Technology, 2020, 54(7):3900-3908
    Knapp C W, McCluskey S M, Singh B K, et al. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils[J]. PLoS One, 2011, 6(11):e27300
    Hussey S J K, Purves J, Allcock N, et al. Air pollution alters Staphylococcus aureus and Streptococcus pneumoniae biofilms, antibiotic tolerance and colonization[J]. Environmental Microbiology, 2017, 19(5):1868-1880
    Wu W X, Zhang W, Duggan E S, et al. RIG-I and TLR3 are both required for maximum interferon induction by influenza virus in human lung alveolar epithelial cells[J]. Virology, 2015, 482:181-188
    Platanias L C, Uddin S, Domanski P, et al. Differences in interferon alpha and beta signaling. Interferon beta selectively induces the interaction of the alpha and betaL subunits of the type I interferon receptor[J]. The Journal of Biological Chemistry, 1996, 271(39):23630-23633
    Perng Y C, Lenschow D J. ISG15 in antiviral immunity and beyond[J]. Nature Reviews Microbiology, 2018, 16(7):423-439
    Li S, Zhu M Z, Pan R G, et al. The tumor suppressor PTEN has a critical role in antiviral innate immunity[J]. Nature Immunology, 2016, 17(3):241-249
    Ma J H, Song S H, Guo M, et al. Long-term exposure to PM2.5 lowers influenza virus resistance via down-regulating pulmonary macrophage Kdm6a and mediates histones modification in IL-6 and IFN-β promoter regions[J]. Biochemical and Biophysical Research Communications, 2017, 493(2):1122-1128
    Dolci M, Favero C, Bollati V, et al. Particulate matter exposure increases JC polyomavirus replication in the human host[J]. Environmental Pollution, 2018, 241:234-239
    Wu J, Zhu K H, Luo X L, et al. PM2.5 promotes replication of VSV by ubiquitination degradation of phospho-IRF3 in A549 cells[J]. Toxicology in Vitro, 2020, 62:104698
    Xie Y Q, Zhang X, Tian Z Y, et al. Preexposure to PM2.5 exacerbates acute viral myocarditis associated with Th17 cell[J]. International Journal of Cardiology, 2013, 168(4):3837-3845
    Lambert A L, Trasti F S, Mangum J B, et al. Effect of preexposure to ultrafine carbon black on respiratory syncytial virus infection in mice[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2003, 72(2):331-338
    Neville L F, Mathiak G, Bagasra O. The immunobiology of interferon-gamma inducible protein 10 kD (IP-10):A novel, pleiotropic member of the C-X-C chemokine superfamily[J]. Cytokine & Growth Factor Reviews, 1997, 8(3):207-219
    Clifford H D, Perks K L, Zosky G R. Geogenic PM10 exposure exacerbates responses to influenza infection[J]. Science of the Total Environment, 2015, 533:275-282
    Weiss G, Fuchs D, Hausen A, et al. Iron modulates interferon-gamma effects in the human myelomonocytic cell line THP-1[J]. Experimental Hematology, 1992, 20(5):605-610
    Fan Y, Bergmann A. The cleaved-Caspase-3 antibody is a marker of Caspase-9-like DRONC activity in Drosophila[J]. Cell Death & Differentiation, 2010, 17(3):534-539
    Zhou T, Hu Y, Wang Y X, et al. Fine particulate matter (PM2.5) aggravates apoptosis of cigarette-inflamed bronchial epithelium in vivo and vitro[J]. Environmental Pollution, 2019, 248:1-9
    Koyama A H. Induction of apoptotic DNA fragmentation by the infection of vesicular stomatitis virus[J]. Virus Research, 1995, 37(3):285-290
    Ritchie A I, Farne H A, Singanayagam A, et al. Pathogenesis of viral infection in exacerbations of airway disease[J]. Annals of the American Thoracic Society, 2015, 12(Suppl 2):S115-S132
    Bakshi S, Taylor J, Strickson S, et al. Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon Β[J]. The Biochemical Journal, 2017, 474(7):1163-1174
    Li X, Zhang Q, Shi Q Z, et al. Demethylase Kdm6a epigenetically promotes IL-6 and IFN-β production in macrophages[J]. Journal of Autoimmunity, 2017, 80:85-94
    Granum B, Gaarder P I, Groeng E, et al. Fine particles of widely different composition have an adjuvant effect on the production of allergen-specific antibodies[J]. Toxicology Letters, 2001, 118(3):171-181
    Zhao J Z, Xie Y Q, Qian C Y, et al. Imbalance of Th1 and Th2 cells in cardiac injury induced by ambient fine particles[J]. Toxicology Letters, 2012, 208(3):225-231
    Szabo S J, Kim S T, Costa G L, et al. A novel transcription factor, T-bet, directs Th1 lineage commitment[J]. Cell, 2000, 100(6):655-669
    Kaplan M H, Schindler U, Smiley S T, et al. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells[J]. Immunity, 1996, 4(3):313-319
    Zheng W, Flavell R A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells[J]. Cell, 1997, 89(4):587-596
    Afzali B, Lombardi G, Lechler R I, et al. The role of T helper 17(Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease[J]. Clinical and Experimental Immunology, 2007, 148(1):32-46
    Larcombe A N, Foong R E, Boylen C E, et al. Acute diesel exhaust particle exposure increases viral titre and inflammation associated with existing influenza infection, but does not exacerbate deficits in lung function[J]. Influenza and Other Respiratory Viruses, 2013, 7(5):701-709
    Salim S Y, Jovel J, Wine E, et al. Exposure to ingested airborne pollutant particulate matter increases mucosal exposure to bacteria and induces early onset of inflammation in neonatal IL-10-deficient mice[J]. Inflammatory Bowel Diseases, 2014, 20(7):1129-1138
    Douwes J, Siebers R, Wouters I, et al. Endotoxin, (1->3)-beta-D-glucans and fungal extra-cellular polysaccharides in New Zealand homes:A pilot study[J]. Annals of Agricultural and Environmental Medicine, 2006, 13(2):361-365
    Johanning E, Biagini R, Hull D, et al. Health and immunology study following exposure to toxigenic fungi (Stachybotrys chartarum) in a water-damaged office environment[J]. International Archives of Occupational and Environmental Health, 1996, 68(4):207-218
    Robbins C A, Swenson L J, Nealley M L, et al. Health effects of mycotoxins in indoor air:A critical review[J]. Applied Occupational and Environmental Hygiene, 2000, 15(10):773-784
    Cabral J P. Can we use indoor fungi as bioindicators of indoor air quality? Historical perspectives and open questions[J]. Science of the Total Environment, 2010, 408(20):4285-4295
    Mensah-Attipoe J, Saari S, Veijalainen A M, et al. Release and characteristics of fungal fragments in various conditions[J]. Science of the Total Environment, 2016, 547:234-243
    Górny R L, Reponen T, Willeke K, et al. Fungal fragments as indoor air biocontaminants[J]. Applied and Environmental Microbiology, 2002, 68(7):3522-3531
  • 加载中
计量
  • 文章访问数:  2321
  • HTML全文浏览数:  2321
  • PDF下载数:  98
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-06-06

大气颗粒物吸附的空气微生物毒性效应的研究进展

    通讯作者: 邓晓蓓, E-mail: dengxiaobei@shsmu.edu.cn
    作者简介: 王健(1997-),男,学士,研究方向为大气污染物的健康风险评价,E-mail:2837985@sjtu.edu.cn
  • 1. 上海交通大学公共卫生学院, 上海 200025;
  • 2. 上海交通大学新华临床医学院, 上海 200092;
  • 3. 上海交通大学医学院癌基因与相关基因国家重点实验室, 上海 200032
基金项目:

国家自然科学基金资助项目(21777099);上海交通大学公共卫生学院成果为导向本科生拔尖培育项目(16GWZY18)

摘要: 大气污染与人群健康关系的研究表明,灰霾天气中的大气颗粒物上附着有多种可吸入微生物,包括病毒、细菌和真菌。大气颗粒物中的部分有机物质能够与这些微生物相互作用,进而改变颗粒物上附着微生物的致病性和持久性。大气颗粒物及其所吸附的病原微生物来源广泛,种类繁多,并由于大气污染加重而越发显得重要。本文结合以往文献资料和新型冠状病毒肺炎的一些实验观察数据,综述了大气颗粒物附着的微生物种类、影响微生物存活的环境条件、与疾病流行的内在关系、大气颗粒物对所附着的可吸入微生物的影响和与疾病相关的毒性效应等5个方面,进一步为大气污染预防和控制措施提供思路和方法。

English Abstract

参考文献 (94)

目录

/

返回文章
返回