Berry M, Metzger D, Chambon P. Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen[J]. The EMBO Journal, 1990, 9(9):2811-2818
Kraus W L, McInerney E M, Katzenellenbogen B S. Ligand-dependent, transcriptionally productive association of the amino- and carboxyl-terminal regions of a steroid hormone nuclear receptor[J]. PNAS, 1995, 92(26):12314-12318
McInerney E M, Tsai M J, O'Malley B W, et al. Analysis of estrogen receptor transcriptional enhancement by a nuclear hormone receptor coactivator[J]. PNAS, 1996, 93(19):10069-10073
Onate S A, Boonyaratanakornkit V, Spencer T E, et al. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1(AF1) and AF2 domains of steroid receptors[J]. Journal of Biological Chemistry, 1998, 273(20):12101-12108
Beato M. Gene regulation by steroid hormones[J]. Cell, 1989, 56(3):335-344
Eriksson M A, Härd T, Nilsson L. Molecular dynamics simulations of the glucocorticoid receptor DNA-binding domain in complex with DNA and free in solution[J]. Biophysical Journal, 1995, 68(2):402-426
Evans R M. The steroid and thyroid hormone receptor superfamily[J]. Science, 1988, 240(4854):889-895
Tsai M J, O'Malley B W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members[J]. Annual Review of Biochemistry, 1994, 63:451-486
Danielian P S, White R, Lees J A, et al. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors[J]. The EMBO Journal, 1992, 11(3):1025-1033
Darimont B D, Wagner R L, Apriletti J W, et al. Structure and specificity of nuclear receptor-coactivator interactions[J]. Genes & Development, 1998, 12(21):3343-3356
Feng W, Ribeiro R C, Wagner R L, et al. Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors[J]. Science, 1998, 280(5370):1747-1749
Nilsson S, Mäkelä S, Treuter E, et al. Mechanisms of estrogen action[J]. Physiological Reviews, 2001, 81(4):1535-1565
Urnov F D, Wolffe A P. Chromatin remodeling and transcriptional activation:The cast (in order of appearance)[J]. Oncogene, 2001, 20(24):2991-3006
Narlikar G J, Fan H Y, Kingston R E. Cooperation between complexes that regulate chromatin structure and transcription[J]. Cell, 2002, 108(4):475-487
Kato S, Endoh H, Masuhiro Y, et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase[J]. Science, 1995, 270(5241):1491-1494
Kousteni S, Bellido T, Plotkin L I, et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors:Dissociation from transcriptional activity[J]. Cell, 2001, 104(5):719-730
Porter W, Wang F, Wang W, et al. Role of estrogen receptor/Sp1 complexes in estrogen-induced heat shock protein 27 gene expression[J]. Molecular Endocrinology, 1996, 10(11):1371-1378
Sun G L, Porter W, Safe S. Estrogen-induced retinoic acid receptor α1 gene expression:Role of estrogen receptor-Sp1 complex[J]. Molecular Endocrinology, 1998, 12(6):882-890
Qin C H, Singh P, Safe S. Transcriptional activation of insulin-like growth factor-binding protein-4 by 17β-estradiol in MCF-7 cells:Role of estrogen receptor-Sp1 complexes[J]. Endocrinology, 1999, 140(6):2501-2508
Henklová P, Vrzal R, Ulrichová J, et al. Role of mitogen-activated protein kinases in aryl hydrocarbon receptor signaling[J]. Chemico-Biological Interactions, 2008, 172(2):93-104
Nebert D W, Robinson J R, Niwa A, et al. Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse[J]. Journal of Cellular Physiology, 1975, 85(2 Pt 2 Suppl 1):393-414
Denison M S, Heath-Pagliuso S. The Ah receptor:A regulator of the biochemical and toxicological actions of structurally diverse chemicals[J]. Bulletin of Environmental Contamination and Toxicology, 1998, 61(5):557-568
Poland A, Knutson J C. 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons:Examination of the mechanism of toxicity[J]. Annual Review of Pharmacology and Toxicology, 1982, 22:517-554
Safe S. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds:Environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs)[J]. Critical Reviews in Toxicology, 1990, 21(1):51-88
Meyer B K, Pray-Grant M G, Vanden Heuvel J P, et al. Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity[J]. Molecular and Cellular Biology, 1998, 18(2):978-988
Fujisawa-Sehara A, Yamane M, Fujii-Kuriyama Y. A DNA-binding factor specific for xenobiotic responsive elements of P-450c gene exists as a cryptic form in cytoplasm:Its possible translocation to nucleus[J]. PNAS, 1988, 85(16):5859-5863
Hord N G, Perdew G H. Physicochemical and immunocytochemical analysis of the aryl hydrocarbon receptor nuclear translocator:Characterization of two monoclonal antibodies to the aryl hydrocarbon receptor nuclear translocator[J]. Molecular Pharmacology, 1994, 46(4):618-626
Pollenz R S, Sattler C A, Poland A. The aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator protein show distinct subcellular localizations in Hepa 1c1c7 cells by immunofluorescence microscopy[J]. Molecular Pharmacology, 1994, 45(3):428-438
Hankinson O. The aryl hydrocarbon receptor complex[J]. Annual Review of Pharmacology and Toxicology, 1995, 35:307-340
Probst M R, Reisz-Porszasz S, Agbunag R V, et al. Role of the aryl hydrocarbon receptor nuclear translocator protein in aryl hydrocarbon (dioxin) receptor action[J]. Molecular Pharmacology, 1993, 44(3):511-518
Whitlock J P Jr. Induction of cytochrome p4501a1[J]. Annual Review of Pharmacology and Toxicology, 1999, 39(1):103-125
Phelan D, Winter G M, Rogers W J, et al. Activation of the Ah receptor signal transduction pathway by bilirubin and biliverdin[J]. Archives of Biochemistry and Biophysics, 1998, 357(1):155-163
Poland A, Glover E. Chlorinated dibenzo-p-dioxins:Potent inducers of delta-aminolevulinic acid synthetase and aryl hydrocarbon hydroxylase. Ⅱ. A study of the structure-activity relationship[J]. Molecular Pharmacology, 1973, 9(6):736-747
Nebert D W, Brown D D, Towne D W, et al. Association of fertility, fitness and longevity with the murine Ah locus among (C57BL/6N) (C3H/HeN) recombinant inbred lines[J]. Biology of Reproduction, 1984, 30(2):363-373
Bemanian V, Male R E, Goksyr A. The aryl hydrocarbon receptor-mediated disruption of vitellogenin synthesis in the fish liver:Cross-talk between AHR- and ERα-signalling pathways[J]. Comparative Hepatology, 2004, 3(1):2
Jung J, Ishida K, Nishikawa J I, et al. Inhibition of estrogen action by 2-phenylchromone as AhR agonist in MCF-7 cells[J]. Life Sciences, 2007, 81(19-20):1446-1451
Wang W L, Porter W, Burghardt R, et al. Mechanism of inhibition of MDA-MB-468 breast cancer cell growth by 2,3,7,8-tetrachlorodibenzo-p-dioxin[J]. Carcinogenesis, 1997, 18(5):925-933
Smeets J M W, Rankouhi T R, Nichols K M, et al. In vitro vitellogenin production by carp (Cyprinus carpio) hepatocytes as a screening method for determining (anti)estrogenic activity of xenobiotics[J]. Toxicology and Applied Pharmacology, 1999, 157(1):68-76
Oenga G N, Spink D C, Carpenter D O. TCDD and PCBs inhibit breast cancer cell proliferation in vitro[J]. Toxicology in Vitro, 2004, 18(6):811-819
Umbreit T H, Hesse E J, MacDonald G J, et al. Effects of TCDD-estradiol interactions in three strains of mice[J]. Toxicology Letters, 1988, 40(1):1-9
Romkes M, Safe S. Comparative activities of 2,3,7,8-tetrachlorodibenzo-p-dioxin and progesterone as antiestrogens in the female rat uterus[J]. Toxicology and Applied Pharmacology, 1988, 92(3):368-380
Basavarajappa M S, Hernández-Ochoa I, Wang W, et al. Methoxychlor inhibits growth and induces atresia through the aryl hydrocarbon receptor pathway in mouse ovarian antral follicles[J]. Reproductive Toxicology, 2012, 34(1):16-21
Chiang E F L, Yan Y L, Guiguen Y, et al. Two Cyp19(P450 aromatase) genes on duplicated zebrafish chromosomes are expressed in ovary or brain[J]. Molecular Biology and Evolution, 2001, 18(4):542-550
Forlano P M, Deitcher D L, Myers D A, et al. Anatomical distribution and cellular basis for high levels of aromatase activity in the brain of teleost fish:Aromatase enzyme and mRNA expression identify glia as source[J]. The Journal of Neuroscience, 2001, 21(22):8943-8955
Kishida M, Callard G V. Distinct cytochrome P450 aromatase isoforms in zebrafish (Danio rerio) brain and ovary are differentially programmed and estrogen regulated during early development[J]. Endocrinology, 2001, 142(2):740-750
Kazeto Y, Ijiri S, Matsubara H, et al. Molecular cloning and characterization of 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase cDNAs from Japanese eel ovary[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2003, 85(1):49-56
Cheshenko K, Brion F, Le Page Y, et al. Expression of zebra fish aromatase cyp19a and cyp19b genes in response to the ligands of estrogen receptor and aryl hydrocarbon receptor[J]. Toxicological Sciences, 2007, 96(2):255-267
Zhu B T, Conney A H. Functional role of estrogen metabolism in target cells:Review and perspectives[J]. Carcinogenesis, 1998, 19(1):1-27
Lee A J, Kosh J W, Conney A H, et al. Characterization of the NADPH-dependent metabolism of 17beta-estradiol to multiple metabolites by human liver microsomes and selectively expressed human cytochrome P4503A4 and 3A5[J]. The Journal of Pharmacology and Experimental Therapeutics, 2001, 298(2):420-432
Creveling C R. The role of catechol-O-methyltransferase in the inactivation of catecholestrogen[J]. Cellular and Molecular Neurobiology, 2003, 23(3):289-291
Spink D C, Lincoln D W, Dickerman H W, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin causes an extensive alteration of 17 beta-estradiol metabolism in MCF-7 breast tumor cells[J]. PNAS, 1990, 87(17):6917-6921
Spink D C, Eugster H P, Lincoln D W Ⅱ, et al. 17β-estradiol hydroxylation catalyzed by human cytochrome P4501A1:A comparison of the activities induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in MCF-7 cells with those from heterologous expression of the cDNA[J]. Archives of Biochemistry and Biophysics, 1992, 293(2):342-348
Spink D C, Johnson J A, Connor S P, et al. Stimulation of 17β-estradiol metabolism in MCF-7 cells by bromochloro- and chloromethyl-substituted dibenzo-p-dioxins and dibenzofurans:Correlations with antiestrogenic activity[J]. Journal of Toxicology and Environmental Health, 1994, 41(4):451-466
Saito R, Miki Y, Hata S, et al. Aryl hydrocarbon receptor induced intratumoral aromatase in breast cancer[J]. Breast Cancer Research and Treatment, 2017, 161(3):399-407
Lu F, Zahid M, Saeed M, et al. Estrogen metabolism and formation of estrogen-DNA adducts in estradiol-treated MCF-10F cells:The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin induction and catechol-O-methyltransferase inhibition[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2007, 105(1-5):150-158
Helle J, Keiler A M, Zierau O, et al. Effects of the aryl hydrocarbon receptor agonist 3-methylcholanthrene on the 17β-estradiol regulated mRNA transcriptome of the rat uterus[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2017, 171:133-143
Krishnan V, Porter W, Santostefano M, et al. Molecular mechanism of inhibition of estrogen-induced cathepsin D gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in MCF-7 cells[J]. Molecular and Cellular Biology, 1995, 15(12):6710-6719
Krishnan V, Wang X, Safe S. Estrogen receptor-Sp1 complexes mediate estrogen-induced cathepsin D gene expression in MCF-7 human breast cancer cells[J]. Journal of Biological Chemistry, 1994, 269(22):15912-15917
Wang F, Samudio I, Safe S. Transcriptional activation of cathepsin D gene expression by 17β-estradiol:Mechanism of aryl hydrocarbon receptor-mediated inhibition[J]. Molecular and Cellular Endocrinology, 2001, 172(1-2):91-103
Gillesby B E, Stanostefano M, Porter W, et al. Identification of a motif within the 5' regulatory region of pS2 which is responsible for AP-1 binding and TCDD-mediated suppression[J]. Biochemistry, 1997, 36(20):6080-6089
Porter W, Wang F, Duan R, et al. Transcriptional activation of heat shock protein 27 gene expression by 17beta-estradiol and modulation by antiestrogens and aryl hydrocarbon receptor agonists[J]. Journal of Molecular Endocrinology, 2001, 26(1):31-42
Klinge C M. Estrogen receptor interaction with co-activators and co-repressors[J]. Steroids, 2000, 65(5):227-251
Ricci M S, Toscano D G, Mattingly C J, et al. Estrogen receptor reduces CYP1A1 induction in cultured human endometrial cells[J]. Journal of Biological Chemistry, 1999, 274(6):3430-3438
Brunnberg S, Pettersson K, Rydin E, et al. The basic helix-loop-helix-PAS protein ARNT functions as a potent coactivator of estrogen receptor-dependent transcription[J]. PNAS, 2003, 100(11):6517-6522
Rüegg J, Swedenborg E, Wahlstro m D, et al. The transcription factor aryl hydrocarbon receptor nuclear translocator functions as an estrogen receptor β-selective coactivator, and its recruitment to alternative pathways mediates antiestrogenic effects of dioxin[J]. Molecular Endocrinology, 2008, 22(2):304-316
程龙, 黄翠芬, 叶棋浓. 乳腺癌中雌激素受体α表达水平调节的分子机制[J]. 遗传, 2010, 32(3):191-197 Cheng L, Huang C F, Ye Q N. Molecular mechanisms of regulation of estrogen receptor α expression level in breast cancer[J]. Hereditas, 2010, 32(3):191-197(in Chinese)
Hershko A, Ciechanover A. The ubiquitin system[J]. Annual Review of Biochemistry, 1998, 67:425-479
Deshaies R J. SCF and Cullin/Ring H2-based ubiquitin ligases[J]. Annual Review of Cell and Developmental Biology, 1999, 15:435-467
de Harper J W. A phosphorylation-driven ubiquitination switch for cell-cycle control[J]. Trends in Cell Biology, 2002, 12(3):104-107
Ohtake F, Takeyama K I, Matsumoto T, et al. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor[J]. Nature, 2003, 423(6939):545-550
Galan J M, Peter M. Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism[J]. PNAS, 1999, 96(16):9124-9129
Yanagisawa J, Kitagawa H, Yanagida M, et al. RETRACTED:Nuclear receptor function requires a TFTC-type histone acetyl transferase complex[J]. Molecular Cell, 2002, 9(3):553-562
Baba T, Mimura J, Nakamura N, et al. Intrinsic function of the aryl hydrocarbon (dioxin) receptor as a key factor in female reproduction[J]. Molecular and Cellular Biology, 2005, 25(22):10040-10051
Mimura J, Fujii-Kuriyama Y. Functional role of AhR in the expression of toxic effects by TCDD[J]. Biochimica et Biophysica Acta (BBA):General Subjects, 2003, 1619(3):263-268
Wormke M, Stoner M, Saville B, et al. The aryl hydrocarbon receptor mediates degradation of estrogen receptor α through activation of proteasomes[J]. Molecular and Cellular Biology, 2003, 23(6):1843-1855
Safe S. Molecular biology of the Ah receptor and its role in carcinogenesis[J]. Toxicology Letters, 2001, 120(1-3):1-7
Chen C J, Cheng M T. Effect of flow distributors on uniformity of velocity profile in a baghouse[J]. Journal of the Air & Waste Management Association, 2005, 55(7):886-892
Schiwy A, Brinkmann M, Thiem I, et al. Determination of the CYP1A-inducing potential of single substances, mixtures and extracts of samples in the micro-EROD assay with H4IIE cells[J]. Nature Protocols, 2015, 10(11):1728-1741
Andreasen E A, Spitsbergen J M, Tanguay R L, et al. Tissue-specific expression of AHR2, ARNT2, and CYP1A in zebrafish embryos and larvae:Effects of developmental stage and 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure[J]. Toxicological Sciences, 2002, 68(2):403-419
Cha J, Hong S, Kim J, et al. Major AhR-active chemicals in sediments of Lake Sihwa, South Korea:Application of effect-directed analysis combined with full-scan screening analysis[J]. Environment International, 2019, 133:105199
Kim J, Hong S, Cha J, et al. Newly identified AhR-active compounds in the sediments of an industrial area using effect-directed analysis[J]. Environmental Science & Technology, 2019, 53(17):10043-10052
Zhang Q, Lu M Y, Dong X W, et al. Potential estrogenic effects of phosphorus-containing flame retardants[J]. Environmental Science & Technology, 2014, 48(12):6995-7001
Yang Z H, Luo S, Wei Z S, et al. Rate constants of hydroxyl radical oxidation of polychlorinated biphenyls in the gas phase:A single-descriptor based QSAR and DFT study[J]. Environmental Pollution, 2016, 211:157-164
Xiao H X, Krauss M, Floehr T, et al. Effect-directed analysis of aryl hydrocarbon receptor agonists in sediments from the Three Gorges Reservoir, China[J]. Environmental Science & Technology, 2016, 50(20):11319-11328
Bertazzi P A, Pesatori A C, Consonni D, et al. Cancer incidence in a population accidentally exposed to 2,3,7,8-tetrachlorodibenzo-para-dioxin[J]. Epidemiology, 1993, 4(5):398-406
Chen I, McDougal A, Wang F, et al. Aryl hydrocarbon receptor-mediated antiestrogenic and antitumorigenic activity of diindolylmethane[J]. Carcinogenesis, 1998, 19(9):1631-1639
McDougal A, Sethi Gupta M, Ramamoorthy K, et al. Inhibition of carcinogen-induced rat mammary tumor growth and other estrogen-dependent responses by symmetrical dihalo-substituted analogs of diindolylmethane[J]. Cancer Letters, 2000, 151(2):169-179
Bian Y D, Li Y R, Shrestha G, et al. ITE, an endogenous aryl hydrocarbon receptor ligand, suppresses endometrial cancer cell proliferation and migration[J]. Toxicology, 2019, 421:1-8
Safe S, Wormke M. Inhibitory aryl hydrocarbon receptor-estrogen receptor α cross-talk and mechanisms of action[J]. Chemical Research in Toxicology, 2003, 16(7):807-816