基于AhR信号通路的抗雌激素效应及其机制研究进展
Research Advances of Anti-estrogenic Effect Based on AhR Signaling Pathway and Its Mechanism
-
摘要: 芳香烃受体(AhR)是一种配体依赖型转录因子,在生物体内发挥着重要的生理功能,并能够介导某些外源物质的毒性作用。已有研究表明AhR通路在调控雌性生物体生殖方面发挥着重要作用,无论AhR缺失还是AhR被过度激活均会损害雌性个体的生殖健康。近期有报道表明当AhR通路被激活后,会通过多种途径干扰生物体内源雌激素受体(ER)通路,这提示了一种外源物质发挥抗雌激素效应的新模式。本文通过归纳整理国内外相关研究,首先从AhR信号通路被激活后将会抑制雌激素(E2)合成和促进E2代谢两方面阐述了AhR激动剂降低雌性个体内源E2水平的作用途径,接着又从活化的AhR通路直接抑制雌激素效应基因的转录、与ER通路竞争共调控因子和促进ER降解3个角度总结了AhR激动剂拮抗ER功能的分子机制,以期为相关物质的抗雌激素机制研究提供借鉴与参考。Abstract: Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that plays important endogenous physiological roles in organisms. Furthermore, AhR is a well-known factor that mediates many toxic effects of specific exogenous substances. Previous studies have shown that the AhR pathway regulates female reproduction. Both potent AhR ligands exposed females and transgenic models lacking AhR showed poor reproductive health. Recently, it is reported that the activated AhR pathway interfered with the endogenous estrogen receptor (ER) pathway through a variety of approaches, which suggested us there were new mechanisms underlying the anti-estrogenic effects of exogenous substance. Based on relevant studies from domestic and abroad, in this paper, firstly the roles of AhR agonists in reducing endogenous estrogen (E2) levels in female were described from two aspects:inhibiting E2 synthesis and enhancing E2 metabolism. Then, the molecular mechanisms of AhR agonists antagonizing ER functions were summarized from three aspects:directly inhibiting the transcription of estrogen-regulated genes, competing cofactors involved in ER pathway and enhancing metabolisms of ER. This review will provide new thoughts for exploring anti-estrogenic mechanisms of similar substances.
-
-
Berry M, Metzger D, Chambon P. Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen[J]. The EMBO Journal, 1990, 9(9):2811-2818 Kraus W L, McInerney E M, Katzenellenbogen B S. Ligand-dependent, transcriptionally productive association of the amino- and carboxyl-terminal regions of a steroid hormone nuclear receptor[J]. PNAS, 1995, 92(26):12314-12318 McInerney E M, Tsai M J, O'Malley B W, et al. Analysis of estrogen receptor transcriptional enhancement by a nuclear hormone receptor coactivator[J]. PNAS, 1996, 93(19):10069-10073 Onate S A, Boonyaratanakornkit V, Spencer T E, et al. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1(AF1) and AF2 domains of steroid receptors[J]. Journal of Biological Chemistry, 1998, 273(20):12101-12108 Beato M. Gene regulation by steroid hormones[J]. Cell, 1989, 56(3):335-344 Eriksson M A, Härd T, Nilsson L. Molecular dynamics simulations of the glucocorticoid receptor DNA-binding domain in complex with DNA and free in solution[J]. Biophysical Journal, 1995, 68(2):402-426 Evans R M. The steroid and thyroid hormone receptor superfamily[J]. Science, 1988, 240(4854):889-895 Tsai M J, O'Malley B W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members[J]. Annual Review of Biochemistry, 1994, 63:451-486 Danielian P S, White R, Lees J A, et al. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors[J]. The EMBO Journal, 1992, 11(3):1025-1033 Darimont B D, Wagner R L, Apriletti J W, et al. Structure and specificity of nuclear receptor-coactivator interactions[J]. Genes & Development, 1998, 12(21):3343-3356 Feng W, Ribeiro R C, Wagner R L, et al. Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors[J]. Science, 1998, 280(5370):1747-1749 Nilsson S, Mäkelä S, Treuter E, et al. Mechanisms of estrogen action[J]. Physiological Reviews, 2001, 81(4):1535-1565 Urnov F D, Wolffe A P. Chromatin remodeling and transcriptional activation:The cast (in order of appearance)[J]. Oncogene, 2001, 20(24):2991-3006 Narlikar G J, Fan H Y, Kingston R E. Cooperation between complexes that regulate chromatin structure and transcription[J]. Cell, 2002, 108(4):475-487 Kato S, Endoh H, Masuhiro Y, et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase[J]. Science, 1995, 270(5241):1491-1494 Kousteni S, Bellido T, Plotkin L I, et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors:Dissociation from transcriptional activity[J]. Cell, 2001, 104(5):719-730 Porter W, Wang F, Wang W, et al. Role of estrogen receptor/Sp1 complexes in estrogen-induced heat shock protein 27 gene expression[J]. Molecular Endocrinology, 1996, 10(11):1371-1378 Sun G L, Porter W, Safe S. Estrogen-induced retinoic acid receptor α1 gene expression:Role of estrogen receptor-Sp1 complex[J]. Molecular Endocrinology, 1998, 12(6):882-890 Qin C H, Singh P, Safe S. Transcriptional activation of insulin-like growth factor-binding protein-4 by 17β-estradiol in MCF-7 cells:Role of estrogen receptor-Sp1 complexes[J]. Endocrinology, 1999, 140(6):2501-2508 Henklová P, Vrzal R, Ulrichová J, et al. Role of mitogen-activated protein kinases in aryl hydrocarbon receptor signaling[J]. Chemico-Biological Interactions, 2008, 172(2):93-104 Nebert D W, Robinson J R, Niwa A, et al. Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse[J]. Journal of Cellular Physiology, 1975, 85(2 Pt 2 Suppl 1):393-414 Denison M S, Heath-Pagliuso S. The Ah receptor:A regulator of the biochemical and toxicological actions of structurally diverse chemicals[J]. Bulletin of Environmental Contamination and Toxicology, 1998, 61(5):557-568 Poland A, Knutson J C. 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons:Examination of the mechanism of toxicity[J]. Annual Review of Pharmacology and Toxicology, 1982, 22:517-554 Safe S. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds:Environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs)[J]. Critical Reviews in Toxicology, 1990, 21(1):51-88 Meyer B K, Pray-Grant M G, Vanden Heuvel J P, et al. Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity[J]. Molecular and Cellular Biology, 1998, 18(2):978-988 Fujisawa-Sehara A, Yamane M, Fujii-Kuriyama Y. A DNA-binding factor specific for xenobiotic responsive elements of P-450c gene exists as a cryptic form in cytoplasm:Its possible translocation to nucleus[J]. PNAS, 1988, 85(16):5859-5863 Hord N G, Perdew G H. Physicochemical and immunocytochemical analysis of the aryl hydrocarbon receptor nuclear translocator:Characterization of two monoclonal antibodies to the aryl hydrocarbon receptor nuclear translocator[J]. Molecular Pharmacology, 1994, 46(4):618-626 Pollenz R S, Sattler C A, Poland A. The aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator protein show distinct subcellular localizations in Hepa 1c1c7 cells by immunofluorescence microscopy[J]. Molecular Pharmacology, 1994, 45(3):428-438 Hankinson O. The aryl hydrocarbon receptor complex[J]. Annual Review of Pharmacology and Toxicology, 1995, 35:307-340 Probst M R, Reisz-Porszasz S, Agbunag R V, et al. Role of the aryl hydrocarbon receptor nuclear translocator protein in aryl hydrocarbon (dioxin) receptor action[J]. Molecular Pharmacology, 1993, 44(3):511-518 Whitlock J P Jr. Induction of cytochrome p4501a1[J]. Annual Review of Pharmacology and Toxicology, 1999, 39(1):103-125 Phelan D, Winter G M, Rogers W J, et al. Activation of the Ah receptor signal transduction pathway by bilirubin and biliverdin[J]. Archives of Biochemistry and Biophysics, 1998, 357(1):155-163 Poland A, Glover E. Chlorinated dibenzo-p-dioxins:Potent inducers of delta-aminolevulinic acid synthetase and aryl hydrocarbon hydroxylase. Ⅱ. A study of the structure-activity relationship[J]. Molecular Pharmacology, 1973, 9(6):736-747 Nebert D W, Brown D D, Towne D W, et al. Association of fertility, fitness and longevity with the murine Ah locus among (C57BL/6N) (C3H/HeN) recombinant inbred lines[J]. Biology of Reproduction, 1984, 30(2):363-373 Bemanian V, Male R E, Goksyr A. The aryl hydrocarbon receptor-mediated disruption of vitellogenin synthesis in the fish liver:Cross-talk between AHR- and ERα-signalling pathways[J]. Comparative Hepatology, 2004, 3(1):2 Jung J, Ishida K, Nishikawa J I, et al. Inhibition of estrogen action by 2-phenylchromone as AhR agonist in MCF-7 cells[J]. Life Sciences, 2007, 81(19-20):1446-1451 Wang W L, Porter W, Burghardt R, et al. Mechanism of inhibition of MDA-MB-468 breast cancer cell growth by 2,3,7,8-tetrachlorodibenzo-p-dioxin[J]. Carcinogenesis, 1997, 18(5):925-933 Smeets J M W, Rankouhi T R, Nichols K M, et al. In vitro vitellogenin production by carp (Cyprinus carpio) hepatocytes as a screening method for determining (anti)estrogenic activity of xenobiotics[J]. Toxicology and Applied Pharmacology, 1999, 157(1):68-76 Oenga G N, Spink D C, Carpenter D O. TCDD and PCBs inhibit breast cancer cell proliferation in vitro[J]. Toxicology in Vitro, 2004, 18(6):811-819 Umbreit T H, Hesse E J, MacDonald G J, et al. Effects of TCDD-estradiol interactions in three strains of mice[J]. Toxicology Letters, 1988, 40(1):1-9 Romkes M, Safe S. Comparative activities of 2,3,7,8-tetrachlorodibenzo-p-dioxin and progesterone as antiestrogens in the female rat uterus[J]. Toxicology and Applied Pharmacology, 1988, 92(3):368-380 Basavarajappa M S, Hernández-Ochoa I, Wang W, et al. Methoxychlor inhibits growth and induces atresia through the aryl hydrocarbon receptor pathway in mouse ovarian antral follicles[J]. Reproductive Toxicology, 2012, 34(1):16-21 Chiang E F L, Yan Y L, Guiguen Y, et al. Two Cyp19(P450 aromatase) genes on duplicated zebrafish chromosomes are expressed in ovary or brain[J]. Molecular Biology and Evolution, 2001, 18(4):542-550 Forlano P M, Deitcher D L, Myers D A, et al. Anatomical distribution and cellular basis for high levels of aromatase activity in the brain of teleost fish:Aromatase enzyme and mRNA expression identify glia as source[J]. The Journal of Neuroscience, 2001, 21(22):8943-8955 Kishida M, Callard G V. Distinct cytochrome P450 aromatase isoforms in zebrafish (Danio rerio) brain and ovary are differentially programmed and estrogen regulated during early development[J]. Endocrinology, 2001, 142(2):740-750 Kazeto Y, Ijiri S, Matsubara H, et al. Molecular cloning and characterization of 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase cDNAs from Japanese eel ovary[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2003, 85(1):49-56 Cheshenko K, Brion F, Le Page Y, et al. Expression of zebra fish aromatase cyp19a and cyp19b genes in response to the ligands of estrogen receptor and aryl hydrocarbon receptor[J]. Toxicological Sciences, 2007, 96(2):255-267 Zhu B T, Conney A H. Functional role of estrogen metabolism in target cells:Review and perspectives[J]. Carcinogenesis, 1998, 19(1):1-27 Lee A J, Kosh J W, Conney A H, et al. Characterization of the NADPH-dependent metabolism of 17beta-estradiol to multiple metabolites by human liver microsomes and selectively expressed human cytochrome P4503A4 and 3A5[J]. The Journal of Pharmacology and Experimental Therapeutics, 2001, 298(2):420-432 Creveling C R. The role of catechol-O-methyltransferase in the inactivation of catecholestrogen[J]. Cellular and Molecular Neurobiology, 2003, 23(3):289-291 Spink D C, Lincoln D W, Dickerman H W, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin causes an extensive alteration of 17 beta-estradiol metabolism in MCF-7 breast tumor cells[J]. PNAS, 1990, 87(17):6917-6921 Spink D C, Eugster H P, Lincoln D W Ⅱ, et al. 17β-estradiol hydroxylation catalyzed by human cytochrome P4501A1:A comparison of the activities induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in MCF-7 cells with those from heterologous expression of the cDNA[J]. Archives of Biochemistry and Biophysics, 1992, 293(2):342-348 Spink D C, Johnson J A, Connor S P, et al. Stimulation of 17β-estradiol metabolism in MCF-7 cells by bromochloro- and chloromethyl-substituted dibenzo-p-dioxins and dibenzofurans:Correlations with antiestrogenic activity[J]. Journal of Toxicology and Environmental Health, 1994, 41(4):451-466 Saito R, Miki Y, Hata S, et al. Aryl hydrocarbon receptor induced intratumoral aromatase in breast cancer[J]. Breast Cancer Research and Treatment, 2017, 161(3):399-407 Lu F, Zahid M, Saeed M, et al. Estrogen metabolism and formation of estrogen-DNA adducts in estradiol-treated MCF-10F cells:The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin induction and catechol-O-methyltransferase inhibition[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2007, 105(1-5):150-158 Helle J, Keiler A M, Zierau O, et al. Effects of the aryl hydrocarbon receptor agonist 3-methylcholanthrene on the 17β-estradiol regulated mRNA transcriptome of the rat uterus[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2017, 171:133-143 Krishnan V, Porter W, Santostefano M, et al. Molecular mechanism of inhibition of estrogen-induced cathepsin D gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in MCF-7 cells[J]. Molecular and Cellular Biology, 1995, 15(12):6710-6719 Krishnan V, Wang X, Safe S. Estrogen receptor-Sp1 complexes mediate estrogen-induced cathepsin D gene expression in MCF-7 human breast cancer cells[J]. Journal of Biological Chemistry, 1994, 269(22):15912-15917 Wang F, Samudio I, Safe S. Transcriptional activation of cathepsin D gene expression by 17β-estradiol:Mechanism of aryl hydrocarbon receptor-mediated inhibition[J]. Molecular and Cellular Endocrinology, 2001, 172(1-2):91-103 Gillesby B E, Stanostefano M, Porter W, et al. Identification of a motif within the 5' regulatory region of pS2 which is responsible for AP-1 binding and TCDD-mediated suppression[J]. Biochemistry, 1997, 36(20):6080-6089 Porter W, Wang F, Duan R, et al. Transcriptional activation of heat shock protein 27 gene expression by 17beta-estradiol and modulation by antiestrogens and aryl hydrocarbon receptor agonists[J]. Journal of Molecular Endocrinology, 2001, 26(1):31-42 Klinge C M. Estrogen receptor interaction with co-activators and co-repressors[J]. Steroids, 2000, 65(5):227-251 Ricci M S, Toscano D G, Mattingly C J, et al. Estrogen receptor reduces CYP1A1 induction in cultured human endometrial cells[J]. Journal of Biological Chemistry, 1999, 274(6):3430-3438 Brunnberg S, Pettersson K, Rydin E, et al. The basic helix-loop-helix-PAS protein ARNT functions as a potent coactivator of estrogen receptor-dependent transcription[J]. PNAS, 2003, 100(11):6517-6522 Rüegg J, Swedenborg E, Wahlstro m D, et al. The transcription factor aryl hydrocarbon receptor nuclear translocator functions as an estrogen receptor β-selective coactivator, and its recruitment to alternative pathways mediates antiestrogenic effects of dioxin[J]. Molecular Endocrinology, 2008, 22(2):304-316 程龙, 黄翠芬, 叶棋浓. 乳腺癌中雌激素受体α表达水平调节的分子机制[J]. 遗传, 2010, 32(3):191-197 Cheng L, Huang C F, Ye Q N. Molecular mechanisms of regulation of estrogen receptor α expression level in breast cancer[J]. Hereditas, 2010, 32(3):191-197(in Chinese)
Hershko A, Ciechanover A. The ubiquitin system[J]. Annual Review of Biochemistry, 1998, 67:425-479 Deshaies R J. SCF and Cullin/Ring H2-based ubiquitin ligases[J]. Annual Review of Cell and Developmental Biology, 1999, 15:435-467 de Harper J W. A phosphorylation-driven ubiquitination switch for cell-cycle control[J]. Trends in Cell Biology, 2002, 12(3):104-107 Ohtake F, Takeyama K I, Matsumoto T, et al. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor[J]. Nature, 2003, 423(6939):545-550 Galan J M, Peter M. Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism[J]. PNAS, 1999, 96(16):9124-9129 Yanagisawa J, Kitagawa H, Yanagida M, et al. RETRACTED:Nuclear receptor function requires a TFTC-type histone acetyl transferase complex[J]. Molecular Cell, 2002, 9(3):553-562 Baba T, Mimura J, Nakamura N, et al. Intrinsic function of the aryl hydrocarbon (dioxin) receptor as a key factor in female reproduction[J]. Molecular and Cellular Biology, 2005, 25(22):10040-10051 Mimura J, Fujii-Kuriyama Y. Functional role of AhR in the expression of toxic effects by TCDD[J]. Biochimica et Biophysica Acta (BBA):General Subjects, 2003, 1619(3):263-268 Wormke M, Stoner M, Saville B, et al. The aryl hydrocarbon receptor mediates degradation of estrogen receptor α through activation of proteasomes[J]. Molecular and Cellular Biology, 2003, 23(6):1843-1855 Safe S. Molecular biology of the Ah receptor and its role in carcinogenesis[J]. Toxicology Letters, 2001, 120(1-3):1-7 Chen C J, Cheng M T. Effect of flow distributors on uniformity of velocity profile in a baghouse[J]. Journal of the Air & Waste Management Association, 2005, 55(7):886-892 Schiwy A, Brinkmann M, Thiem I, et al. Determination of the CYP1A-inducing potential of single substances, mixtures and extracts of samples in the micro-EROD assay with H4IIE cells[J]. Nature Protocols, 2015, 10(11):1728-1741 Andreasen E A, Spitsbergen J M, Tanguay R L, et al. Tissue-specific expression of AHR2, ARNT2, and CYP1A in zebrafish embryos and larvae:Effects of developmental stage and 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure[J]. Toxicological Sciences, 2002, 68(2):403-419 Cha J, Hong S, Kim J, et al. Major AhR-active chemicals in sediments of Lake Sihwa, South Korea:Application of effect-directed analysis combined with full-scan screening analysis[J]. Environment International, 2019, 133:105199 Kim J, Hong S, Cha J, et al. Newly identified AhR-active compounds in the sediments of an industrial area using effect-directed analysis[J]. Environmental Science & Technology, 2019, 53(17):10043-10052 Zhang Q, Lu M Y, Dong X W, et al. Potential estrogenic effects of phosphorus-containing flame retardants[J]. Environmental Science & Technology, 2014, 48(12):6995-7001 Yang Z H, Luo S, Wei Z S, et al. Rate constants of hydroxyl radical oxidation of polychlorinated biphenyls in the gas phase:A single-descriptor based QSAR and DFT study[J]. Environmental Pollution, 2016, 211:157-164 Xiao H X, Krauss M, Floehr T, et al. Effect-directed analysis of aryl hydrocarbon receptor agonists in sediments from the Three Gorges Reservoir, China[J]. Environmental Science & Technology, 2016, 50(20):11319-11328 Bertazzi P A, Pesatori A C, Consonni D, et al. Cancer incidence in a population accidentally exposed to 2,3,7,8-tetrachlorodibenzo-para-dioxin[J]. Epidemiology, 1993, 4(5):398-406 Chen I, McDougal A, Wang F, et al. Aryl hydrocarbon receptor-mediated antiestrogenic and antitumorigenic activity of diindolylmethane[J]. Carcinogenesis, 1998, 19(9):1631-1639 McDougal A, Sethi Gupta M, Ramamoorthy K, et al. Inhibition of carcinogen-induced rat mammary tumor growth and other estrogen-dependent responses by symmetrical dihalo-substituted analogs of diindolylmethane[J]. Cancer Letters, 2000, 151(2):169-179 Bian Y D, Li Y R, Shrestha G, et al. ITE, an endogenous aryl hydrocarbon receptor ligand, suppresses endometrial cancer cell proliferation and migration[J]. Toxicology, 2019, 421:1-8 Safe S, Wormke M. Inhibitory aryl hydrocarbon receptor-estrogen receptor α cross-talk and mechanisms of action[J]. Chemical Research in Toxicology, 2003, 16(7):807-816 -

计量
- 文章访问数: 5657
- HTML全文浏览数: 5657
- PDF下载数: 129
- 施引文献: 0