Larsson P. Contaminated sediments of lakes and oceans act as sources of chlorinated hydrocarbons for release to water and atmosphere[J]. Nature, 1985, 317:347-349
|
Jonker M T O, Hoenderboom A M, Koelmans A A. Effects of sedimentary sootlike materials on bioaccumulation and sorption of polychlorinated biphenyls[J]. Environmental Toxicology and Chemistry, 2004, 23(11):2563-2570
|
Sun X L, Ghosh U. The effect of activated carbon on partitioning, desorption, and biouptake of native polychlorinated biphenyls in four freshwater sediments[J]. Environmental Toxicology and Chemistry, 2008, 27(11):2287-2295
|
Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 2014, 99:19-33
|
Shen M, Xia X, Wang F, et al. Influences of multiwalled carbon nanotubes and plant residue chars on bioaccumulation of polycyclic aromatic hydrocarbons by Chironomus plumosus larvae in sediment[J]. Environmental Toxicology and Chemistry, 2012, 31(1):202-209
|
Xia X, Chen X, Zhao X, et al. Effects of carbon nanotubes, chars, and ash on bioaccumulation of perfluorochemicals by Chironomus plumosus larvae in sediment[J]. Environmental Science & Technology, 2012, 46(22):12467-12475
|
Rakowska M I, Kupryianchyk D, Harmsen J, et al. In situ remediation of contaminated sediments using carbonaceous materials[J]. Environmental Toxicology and Chemistry, 2012, 31(4):693-704
|
Sun K, Gao B, Ro K S, et al. Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment[J]. Environmental Pollution, 2012, 163:167-173
|
Jia F, Gan J. Comparing black carbon types in sequestering polybrominated diphenyl ethers (PBDEs) in sediments[J]. Environmental Pollution, 2014, 184:131-137
|
Cao X, Ma L, Gao B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9):3285-3291
|
Wang Y, Wang L, Fang G, et al. Enhanced PCBs sorption on biochars as affected by environmental factors:Humic acid and metal cations[J]. Environmental Pollution, 2013, 172:86-93
|
Bielská L, Škulcová L, Neuwirthová N, et al. Sorption, bioavailability and ecotoxic effects of hydrophobic organic compounds in biochar amended soils[J]. Science of The Total Environment, 2018, 624:78-86
|
田斌,王萌,陈环宇,等.活性污泥生物炭对沉积物中镉生态毒性的影响[J].生态与农村环境学报, 2018, 34(2):161-168
Tian B, Wang M, Chen H Y, et al. Impacts of biochar derived from activated sludge on ecotoxicity of Cd in the sediment[J]. Journal of Ecology and Rural Environment, 2018, 34(2):161-168(in Chinese)
|
Ma T W, Gong S J, Zhou K, et al. Laboratory culture of the freshwater benthic gastropod Bellamya aeruginosa (Reeve) and its utility as a test species for sediment toxicity[J]. Journal of Environmental Sciences, 2010, 22(2):304-313
|
周科,马陶武,朱程,等. 2,2',4,4'-四溴联苯醚(BDE-47)污染沉积物对铜锈环棱螺肝胰脏的SOD、CAT和EROD活性的影响[J].环境科学学报, 2010, 30(8):1666-1673
Zhou K, Ma T W, Zhu C, et al. Effects of 2,2',4,4'-tetrabromodiphenylether (BDE-7)-contaminated sediments on SOD, CAT, and EROD activities in the hepatopancreas of Bellamya aeruginosa[J]. Acta Scientiae Circumstantiae, 2010, 30(8):1666-1673(in Chinese)
|
龚双姣,王萌,龙奕,等.沉积物中人工纳米颗粒对BDE-47生态毒性的影响[J].农业环境科学学报, 2015, 34(11):2089-2096
Gong S J, Wang M, Long Y, et al. Impact of engineered nanoparticles on ecotoxicity of BDE-47 in sediments[J]. Journal of Agro-Environment Science, 2015, 34(11):2089-2096(in Chinese)
|
陈社军,麦碧娴,曾永平,等.珠江三角洲及南海北部海域表层沉积物中多溴联苯醚的分布特征[J].环境科学学报, 2005, 25(9):1265-1271
Chen S J, Mai B X, Zeng S P, et al. Polybrominated diphenyl ethers (PBDEs) in surficial sediments of the Pearl River Delta and adjacent South China Sea[J]. Acta Scientiae Circumstantiae, 2005, 25(9):1265-1271(in Chinese)
|
王萌,刘珊珊,龙奕,等.沉积物中不同浓度多壁碳纳米管对Cd和BDE-47生态毒性的影响[J].环境科学学报, 2015, 35(12):4150-4158
Wang M, Liu S S, Long Y, et al. Impacts of multi-walled carbon nanotubes on ecotoxicity of Cd and BDE-47 in sediments[J]. Acta Scientiae Circumstantiae, 2015, 35(12):4150-4158(in Chinese)
|
Simpson S L, Angel B M, Jolley D F. Metal equilibration in laboratory-contaminated (spiked) sediments used for the development of whole-sediment toxicity tests[J]. Chemosphere, 2004, 54(5):597-609
|
Tice R R, Agurell E, Anderson D. Single cell gel/comet assay:Guidelines for in vitro and in vivo genetic toxicology testing[J]. Environmental and Molecular Mutagenesis, 2000, 35(3):206-221
|
Ma T W, Wang M, Gong S J, et al. Impacts of sediment organic matter content and pH on ecotoxicity of coexposure of TiO 2 nanoparticles and cadmium to freshwater snails Bellamya aeruginosa[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(1):153-165
|
龙奕,刘珊珊,王萌,等.纳米Al2O3和Cd联合暴露对铜锈环棱螺体内Cd的生物积累和抗氧化酶活性的影响[J].生态毒理学报, 2015, 10(2):216-223
Long Y, Liu S S, Wang M, et al. Effects of Cd and Al2O3-NPs co-exposure on bioaccumulation of Cd and antioxidase enzyme activities in Bellamya aeroginosa[J]. Asian Journal of Ecotoxicology, 2015, 10(2):216-223(in Chinese)
|
刘佳,彭巾英,马陶武,等.沉积物中2,2',4,4'-四溴联苯醚(BDE-47)在铜锈环棱螺体内的毒代动力学及其繁殖毒性[J].生态毒理学报, 2012, 7(3):259-267
Liu J, Peng J Y, Ma T W, et al. Toxicokinetics and reproductive effects of sediment-associated 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in Bellamya aeruginosa[J]. Asian Journal of Ecotoxicology, 2012, 7(3):259-267(in Chinese)
|
Freddo A, Cai C, Reid B J. Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar[J]. Environmental Pollution, 2012, 171:18-24
|
Campisi T, Samorì C, Torri C, et al. Chemical and ecotoxicological properties of three bio-oils from pyrolysis of biomasses[J]. Ecotoxicology and Environmental Safety, 2016, 132:87-93
|
Busch D, Kammann C, Grunhage L, et al. Simple biotoxicity tests for evaluation of carbonaceous soil additives:Establishment and reproducibility of four test procedures[J]. Journal of Environmental Quality, 2012, 41(4):1023-1032
|
Busch D, Stark A, Kammann C I, et al. Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis[J]. Ecotoxicology and Environmental Safety, 2013, 97:59-66
|
韩杰,孟军,杜宛璘,等.生物炭对小鼠的毒性作用研究[J].沈阳农业大学学报, 2017(4):451-455 Han J, Meng J, Du W L, et al. Study on sub-acute toxicity test in mice of rice straw biochar[J]. Journal of Shenyang Agricultural University, 2017
(4):451-455(in Chinese)
|
Devi P, Saroha A.K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals[J]. Bioresource Technology, 2014, 162:308-315
|
Domene X, Enders A, Hanley K, et al. Ecotoxicological characterization of biochars:Role of feedstock and pyrolysis temperature[J]. Science of the Total Environment, 2015, 512-513:552-561
|
Lyu H, He Y, Tang J, et al. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment[J]. Environmental Pollution, 2016, 218:1-7
|
Huang H, Yao W, Li R, et al. Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue[J]. Bioresource Technology, 2018, 249(Supplement C):487-493
|
Fornes F, Belda R M. Acidification with nitric acid improves chemical characteristics and reduces phytotoxicity of alkaline chars[J]. Journal of Environmental Management, 2017, 191:237-243
|
Oleszczuk P, Jośko I, Kuśmierz M. Biochar properties regarding to contaminants content and ecotoxicological assessment[J]. Journal of Hazardous Materials, 2013, 260:375-382
|
Wang F, Ji R, Jiang Z, et al. Species-dependent effects of biochar amendment on bioaccumulation of atrazine in earthworms[J]. Environmental Pollution, 2014, 186:241-247
|
Bielská L, Kah M, Sigmund G, et al. Bioavailability and toxicity of pyrene in soils upon biochar and compost addition[J]. Science of the Total Environment, 2017, 595:132-140
|