Mandal B K, Suzuki K T. Arsenic round the world: A review[J]. Talanta, 2002, 58(1): 201-235
|
Han Y H, Liu X, Rathinasabapathi B, et al. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata[J]. Environmental Pollution, 2017, 227: 569-577
|
Chandrakar V, Naithani S C, Keshavkant S. Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: A review[J]. Biologia, 2016, 71(4): 367-377
|
Shahid M, Dumat C, Pourrut B, et al. Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots[J]. Journal of Soils and Sediments, 2014, 14(4): 835-843
|
Joseph T, Dubey B, McBean E A. Human health risk assessment from arsenic exposures in Bangladesh[J]. Science of the Total Environment, 2015, 527-528: 552-560
|
Rafiq M, Shahid M, Abbas G, et al. Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of Pisum sativum[J]. International Journal of Phytoremediation, 2017, 19(7): 662-669
|
Armendariz A L, Talano M A, Travaglia C, et al. Arsenic toxicity in soybean seedlings and their attenuation mechanisms[J]. Plant Physiology and Biochemistry, 2016, 98: 119-127
|
Siddiqui M H, Alamri S, Khan M N, et al. Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress[J]. Journal of Hazardous Materials, 2020, 398: 122882
|
Meharg A A, Hartley-Whitaker J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species[J]. New Phytologist, 2002, 154(1): 29-43
|
Meharg A A. Integrated tolerance mechanisms: Constitutive and adaptive plant responses to elevated metal concentrations in the environment[J]. Plant, Cell & Environment, 1994, 17(9): 989-993
|
Quaghebeur M, Rengel Z. The distribution of arsenate and arsenite in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply[J]. Plant Physiology, 2003, 132(3): 1600-1609
|
Abbas M H H, Meharg A A. Arsenate, arsenite and dimethyl arsinic acid (DMA) uptake and tolerance in maize (Zea mays L.)[J]. Plant and Soil, 2008, 304(1): 277-289
|
郭雪雁, 马义兵, 李波. 陆地生态系统中低剂量毒物刺激作用及拟合模型研究进展[J]. 生态学报, 2009, 29(8): 4408-4419
Guo X Y, Ma Y B, Li B. Advances in the effects, mechanisms and modeling of hormesis in terrestrial ecosystems[J]. Acta Ecologica Sinica, 2009, 29(8): 4408-4419(in Chinese)
|
段维霞, 江高峰. 毒物兴奋效应及其潜在应用价值研究进展[J]. 中国公共卫生, 2012, 28(6): 859-860
Duan W X, Jiang G F. Research progress on excitability effect of poisons and its potential application value[J]. Chinese Journal of Public Health, 2012, 28(6): 859-860(in Chinese)
|
贾莲, 刘周莉, 陈玮, 等. 镉对金银花的毒物刺激效应[J]. 应用生态学报, 2013, 24(4): 935-940
Jia L, Liu Z L, Chen W, et al. Hormesis effect of cadmium on Lonicera japonica[J]. Chinese Journal of Applied Ecology, 2013, 24(4): 935-940(in Chinese)
|
de la Rosa G, Peralta-Videa J R, Montes M, et al. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies[J]. Chemosphere, 2004, 55(9): 1159-1168
|
任劲飞, 王召锋, 侯扶江, 等. 土壤中抗生素残留对氮素生物转化的影响[J]. 生态毒理学报, 2023, 18(4): 77-86
Ren J F, Wang Z F, Hou F J, et al. Effects of antibiotic residues on nitrogen transformations in soil[J]. Asian Journal of Ecotoxicology, 2023, 18(4): 77-86(in Chinese)
|
任伟, 杨桂英, 刘云根, 等. 砷胁迫对湿地植物香蒲生长的影响及其耐受性分析[J]. 云南大学学报(自然科学版), 2021, 43(1): 164-173 Ren W, Yang G Y, Liu Y G, et al. Effect of arsenic stress on the growth of Typha angustifolia L. in plateau wetlands and its arsenic tolerance[J]. Journal of Yunnan University (Natural Sciences Edition), 2021, 43(1): 164-173(in Chinese)
|
孙晶, 马广, 毕廷涛. 砷胁迫对不同麦种根长、株高、生物量的试验性研究[J]. 环境科学导刊, 2015, 34(2): 17-19
Sun J, Ma G, Bi T T. An experimental study on the arsenic intimidation responses on the root length, height, and biomass of three kinds of wheat seeds[J]. Environmental Science Survey, 2015, 34(2): 17-19(in Chinese)
|
Budzyńska S, Krzesłowska M, Niedzielski P, et al. Arsenite phytoextraction and its influence on selected nutritional elements in one-year-old tree species[J]. Microchemical Journal, 2017, 133: 530-538
|
Kapustka L A, Eskew D, Yocum J M. Plant toxicity testing to derive ecological soil screening levels for cobalt and nickel[J]. Environmental Toxicology and Chemistry, 2006, 25(3): 865-874
|
徐卫红, 王宏信, 王正银, 等. 锌、镉复合污染对重金属蓄集植物黑麦草养分吸收及锌、镉积累的影响[J]. 生态毒理学报, 2006, 1(1): 70-74
Xu W H, Wang H X, Wang Z Y, et al. Effects of zinc, cadmium and their combined pollution on nutrient uptake and Zn, Cd accumulation in ryegrass (Lolium perenne L.)[J]. Asian Journal of Ecotoxicology, 2006, 1(1): 70-74(in Chinese)
|
Panda D, Sharma S G, Sarkar R K. Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.)[J]. Aquatic Botany, 2008, 88(2): 127-133
|
Duan G L, Zhu Y G, Tong Y P, et al. Characterization of arsenate reductase in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator[J]. Plant Physiology, 2005, 138(1): 461-469
|
夏新迪. 不同品种玉米对砷胁迫的生理反应特性研究[D]. 沈阳: 沈阳农业大学, 2016: 31-43 Xia X D. Influence of arsenic stress on physiological and biochemical characteristics of different cultivars of maize (Zea mays L)[D]. Shenyang: Shenyang Agricultural University, 2016: 31
-43(in Chinese)
|
Rahman M A, Hasegawa H, Rahman M M, et al. Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain[J]. Chemosphere, 2007, 69(6): 942-948
|
宋榕洁, 唐艳葵, 陈玲, 等. 超富集植物对镉、砷的累积特性及耐性机制研究进展[J]. 江苏农业科学, 2015, 43(6): 6-10
Song R J, Tang Y K, Chen L, et al. Research progress on accumulation characteristics and tolerance mechanism of cadmium and arsenic in hyperaccumulator plants[J]. Jiangsu Agricultural Sciences, 2015, 43(6): 6-10(in Chinese)
|
赵天宏, 裴超, 赵艺欣, 等. 砷胁迫对超级稻根系保护酶活性和渗透调节物质的影响[J]. 华北农学报, 2012, 27(2): 152-156
Zhao T H, Pei C, Zhao Y X, et al. Effects on protective enzymes and osmotic regulation substances to arsenic stress in super rice roots[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(2): 152-156(in Chinese)
|
Stolz J F, Basu P, Santini J M, et al. Arsenic and selenium in microbial metabolism[J]. Annual Review of Microbiology, 2006, 60: 107-130
|
Luo S L, Chen L, Chen J L, et al. Analysis and characterization of cultivable heavy metal-resistantbacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation[J]. Chemosphere, 2011, 85(7): 1130-1138
|
Ryan R P, Germaine K, Franks A, et al. Bacterial endophytes: Recent developments and applications[J]. FEMS Microbiology Letters, 2008, 278(1): 1-9
|
阮美颖, 徐明飞, 张永志, 等. 南瓜对重金属As, Pb, Cd, Hg的吸收及其积累规律[J]. 浙江农业学报, 2008, 20(5): 358-361
Ruan M Y, Xu M F, Zhang Y Z, et al. Pumpkin's adaptability to As, Pb, Cd, Hg and the rule of heavy metals absorption and accumulation[J]. Acta Agriculturae Zhejiangensis, 2008, 20(5): 358-361(in Chinese)
|
张田, 闫慧莉, 何振艳. 蜈蚣草中砷超富集的分子机制研究进展[J]. 生物工程学报, 2020, 36(3): 397-406
Zhang T, Yan H L, He Z Y. Advances in molecular mechanisms of arsenic hyperaccumulation of Pteris vittata L.[J]. Chinese Journal of Biotechnology, 2020, 36(3): 397-406(in Chinese)
|
高鹏, 高品, 孙蔚旻, 等. 蜈蚣草根际及内生微生物群落对砷污染胁迫的响应机制研究[J]. 生态环境学报, 2022, 31(6): 1225-1234
Gao P, Gao P, Sun W M, et al. Response of the endosphere and rhizosphere microbial community in Petris vittata L. to arsenic stress[J]. Ecology and Environmental Sciences, 2022, 31(6): 1225-1234(in Chinese)
|
Koller C E, Patrick J W, Rose R J, et al. Pteris umbrosa R. Br. as an arsenic hyperaccumulator: Accumulation, partitioning and comparison with the established As hyperaccumulator Pteris vittata[J]. Chemosphere, 2007, 66(7): 1256-1263
|
杨金红, 郑玉彬, 刘芳. 芦苇对砷的吸收运转及对砷污染土壤的修复效果[J]. 江苏农业科学, 2017, 45(19): 299-302
Yang J H, Zheng Y B, Liu F. Absorption and transportation of arsenic by reed and its remediation effect on arsenic-contaminated soil[J]. Jiangsu Agricultural Sciences, 2017, 45(19): 299-302(in Chinese)
|
柯汉玲, 祖艳群. 三年生三七生长、光合特征及砷含量对土壤砷胁迫的响应[J]. 云南农业大学学报(自然科学), 2016, 31(6): 1065-1072 Ke H L, Zu Y Q. Response of the growth, photosynthetic characteristics and As contents of Panax notoginseng plant to soil As stress[J]. Journal of Yunnan Agricultural University (Natural Science), 2016, 31(6): 1065-1072(in Chinese)
|
任伟, 倪大伟, 刘云根, 等. 砷污染生境下挺水植物香蒲对砷的积累与迁移特性[J]. 环境科学研究, 2019, 32(5): 848-856
Ren W, Ni D W, Liu Y G, et al. Accumulation and transportation of arsenic to wetland plant Typha angustifolia L. in the herbaceous plants grown in arsenic-contaminated habitat[J]. Research of Environmental Sciences, 2019, 32(5): 848-856(in Chinese)
|
秦玉燕, 王运儒, 时鹏涛, 等. 硒-砷交互作用对白菜砷和硒吸收转运的影响[J]. 环境化学, 2021, 40(9): 2640-2648
Qin Y Y, Wang Y R, Shi P T, et al. Interactions between arsenic and selenium uptake and translocation in Chinese cabbage[J]. Environmental Chemistry, 2021, 40(9): 2640-2648(in Chinese)
|
方瑜鸿. 生长基质及砷胁迫对苦草生长影响的研究[D]. 昆明: 云南大学, 2021: 29-33 Fang Y H. Study on the effects of substrates and arsenic stress on the growth of Vallisneria natans[D]. Kunming: Yunnan University, 2021: 29
-33(in Chinese)
|
朱顺. 不同品种小麦幼苗耐砷性差异及砷胁迫下抗氧化系统的变化[D]. 南京: 南京农业大学, 2015: 13-18 Zhu S. Difference of arsenic tolerance of different wheat seedlings and changes of antioxidant system under arsenic stress[D]. Nanjing: Nanjing Agricultural University, 2015: 13
-18(in Chinese)
|
韩东英, 李诗刚, 宋桂龙, 等. 砷胁迫下老芒麦和香根草根茎叶砷吸收特征及抗氧化响应[J]. 草业科学, 2018, 35(3): 614-623
Han D Y, Li S G, Song G L, et al. Effect of arsenic on the absorption of arsenic and antioxidant enzyme activity in three parts (roots, stems, leaves) of Elymus sibiricus and Vetiveria zizanioides[J]. Pratacultural Science, 2018, 35(3): 614-623(in Chinese)
|
丁枫华, 刘术新, 罗丹, 等. 基于水培毒性测试的砷对19种常见蔬菜的毒性[J]. 环境化学, 2010, 29(3): 439-443
Ding F H, Liu S X, Luo D, et al. Arsenic toxicity to nineteen vegetable species in solution culture[J]. Environmental Chemistry, 2010, 29(3): 439-443(in Chinese)
|
蒙敏. 桉树对砷的生理响应和解毒机制研究[D]. 南宁: 广西大学, 2017: 12-13 Meng M. Physiological response and detoxification mechanism of Eucalyptus to arsenic[D]. Nanning: Guangxi University, 2017: 12
-13(in Chinese)
|
徐卫红, Anthony George Kachenko, Balwant Singh. 砷超积累植物粉叶蕨及其对砷的吸收富集研究[J]. 水土保持学报, 2009, 23(2): 173-177
Xu W H, Kachenko A, Singh B. Arsenic-hyperaccumulator Pityrogramma calomelanos (L.) link var. austroamericana (Domin) Farw and its uptake and accumulation of arsenic[J]. Journal of Soil and Water Conservation, 2009, 23(2): 173-177(in Chinese)
|
Yang G Y, Zhong H, Liu X, et al. Arsenic distribution, accumulation and tolerance mechanisms of Typha angustifolia in different phenological growth stages[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(3): 358-365
|
Du L Y, Xia X D, Lan X P, et al. Influence of arsenic stress on physiological, biochemical, and morphological characteristics in seedlings of two cultivars of maize (Zea mays L.)[J]. Water, Air, & Soil Pollution, 2017, 228(2): 55
|
Li J B, Yang Z H, Song G L, et al. Correlations of arsenic and nutrient elements in different tissues of perennial ryegrass under arsenic stress[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(2): 1542-1551
|
陈傲玉. 不同品种菜心吸收累积砷的生理学差异研究[D]. 广州: 暨南大学, 2018: 30-31 Chen A Y. The mechanisms of physiological difference of arsenic uptake and accumulation in different cultivars of Chinese flowering cabbage (Brassica parachinensis L.)[D]. Guangzhou: Jinan University, 2018: 30
-31(in Chinese)
|
Kieffer P, Planchon S, Oufir M, et al. Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves[J]. Journal of Proteome Research, 2009, 8(1): 400-417
|
Singh R, Parihar P, Prasad S M. Simultaneous exposure of sulphur and calcium hinder As toxicity: Up-regulation of growth, mineral nutrients uptake and antioxidants system[J]. Ecotoxicology and Environmental Safety, 2018, 161: 318-331
|
Singh R, Parihar P, Prasad S M. Sulfur and calcium simultaneously regulate photosynthetic performance and nitrogen metabolism status in As-challenged Brassica juncea L. seedlings[J]. Frontiers in Plant Science, 2018, 9: 772
|
Dang F, Wang W X, Zhong H, et al. Effects of phosphate on trace element accumulation in rice (Oryza sativa L.): A 5-year phosphate application study[J]. Journal of Soils and Sediments, 2016, 16(5): 1440-1447
|
Liu X, Feng H Y, Fu J W, et al. Arsenic-induced nutrient uptake in As-hyperaccumulator Pteris vittata and their potential role to enhance plant growth[J]. Chemosphere, 2018, 198: 425-431
|
Sandil S, Óvári M, Dobosy P, et al. Effect of arsenic-contaminated irrigation water on growth and elemental composition of tomato and cabbage cultivated in three different soils, and related health risk assessment[J]. Environmental Research, 2021, 197: 111098
|
刘全吉. 冬小麦、油菜对砷污染反应的比较研究[D]. 武汉: 华中农业大学, 2008: 43-45 Liu Q J. Comparision of responses of winter wheat (Triticum aestivum L.) and rape (Brassica napus) to arsenic stress pollution[D]. Wuhan: Huazhong Agricultural University, 2008: 43
-45(in Chinese)
|
苏锋. 砷和草甘膦复合污染对水稻生长的影响及其机理研究[D]. 武汉: 华中农业大学, 2015: 53-63 Su F. Effect of arsenic and glyphosate combined pollution on rice growth and its mechanism[D]. Wuhan: Huazhong Agricultural University, 2015: 53
-63(in Chinese)
|
Budzyńska S, Krzesłowska M, Niedzielski P, et al. Arsenate phytoextraction abilities of one-year-old tree species and its effects on the nutritional element content in plant organs[J]. International Journal of Phytoremediation, 2019, 21(10): 1019-1031
|
李金波, 李诗刚, 宋桂龙, 等. 两种黑麦草砷吸收特征及其与茎叶营养元素积累的关系研究[J]. 草业学报, 2018, 27(2): 79-87
Li J B, Li S G, Song G L, et al. Arsenic absorption characteristics and relationships between arsenic absorption and nutrient accumulation in stems and leaves of two ryegrass species under arsenic stress[J]. Acta Prataculturae Sinica, 2018, 27(2): 79-87(in Chinese)
|
张凤琳, 姚顿, 杨兆光. 砷胁迫下砷在生菜中迁移转化过程及其对营养元素含量的影响[J]. 安徽农学通报, 2020, 26(5): 18-21
Zhang F L, Yao D, Yang Z G. The migration and transformation process of arsenic and its effect on nutrient content in lettuce under arsenic stress[J]. Anhui Agricultural Science Bulletin, 2020, 26(5): 18-21(in Chinese)
|
Aslan S, Ozturk M, Demirbas A. Evaluation of arsenic and nutrients uptake of tomato plant at various arsenic concentrations of irrigation waters[J]. Communications in Soil Science and Plant Analysis, 2021, 52(19): 2388-2400
|
Xu J Y, Li H B, Liang S, et al. Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata[J]. Environmental Pollution, 2014, 194: 105-111
|
Fässler E, Evangelou M W, Robinson B H, et al. Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS)[J]. Chemosphere, 2010, 80(8): 901-907
|
胡拥军, 王海娟, 王宏镔, 等. 砷胁迫下不同砷富集能力植物内源生长素与抗氧化酶的关系[J]. 生态学报, 2015, 35(10): 3214-3224
Hu Y J, Wang H J, Wang H B, et al. The relationship between endogenous auxin and antioxidative enzymes in two plants with different arsenic-accumulative ability under arsenic stress[J]. Acta Ecologica Sinica, 2015, 35(10): 3214-3224(in Chinese)
|
杨丹慧, 许春辉, 赵福洪, 等. 镉离子对菠菜叶绿体光系统Ⅱ的影响[J]. 植物学报, 1989, 31(9): 702-707
Yang D H, Xu C H, Zhao F H, et al. The effect of cadmium on photosystem Ⅱ in spinach chloroplasts[J]. Journal of Integrative Plant Biology, 1989, 31(9): 702-707(in Chinese)
|
Dawson S P, Dennison W C. Effects of ultraviolet and photosynthetically active radiation on five seagrass species[J]. Marine Biology, 1996, 125(4): 629-638
|
许大全, 张玉忠, 张荣铣. 植物光合作用的光抑制[J]. 植物生理学通信, 1992, 28(4): 237-243
Xu D Q, Zhang Y Z, Zhang R X. Photoinhibition of photosynthesis in plants[J]. Plant Physiology Communications, 1992, 28(4): 237-243(in Chinese)
|
刘全吉, 孙学成, 胡承孝, 等. 砷对小麦生长和光合作用特性的影响[J]. 生态学报, 2009, 29(2): 854-859
Liu Q J, Sun X C, Hu C X, et al. Growth and photosynthesis characteristics of wheat (Triticum aestivum L.) under arsenic stress condition[J]. Acta Ecologica Sinica, 2009, 29(2): 854-859(in Chinese)
|
吴敏兰, 李荭荭, 贾洋洋, 等. 砷胁迫对不同烟草品种光合色素和叶绿素荧光特性的影响[J]. 生态毒理学报, 2015, 10(3): 216-223
Wu M L, Li H H, Jia Y Y, et al. Influence of arsenic stress on the photosynthetic pigments and chlorophyll fluorescence characteristics of different tobacco cultivars[J]. Asian Journal of Ecotoxicology, 2015, 10(3): 216-223(in Chinese)
|
钟智遥, 胡良, 王香莲, 等. 砷胁迫对青萍PSⅡ荧光参数和光响应的影响[J]. 南昌工程学院学报, 2022, 41(4): 23-28
, 36 Zhong Z Y, Hu L, Wang X L, et al. Effects of arsenic stress on PSⅡ fluorescence parameters and light response of Lemna minor L.[J]. Journal of Nanchang Institute of Technology, 2022, 41(4): 23-28, 36(in Chinese)
|
朱世东, 徐文娟. 大棚瓠瓜CO2加富的生理生态效应[J]. 应用生态学报, 2002, 13(4): 429-432
Zhu S D, Xu W J. Ecophysiological effects of CO2 enrichment on bottle gour in plastic house[J]. Chinese Journal of Applied Ecology, 2002, 13(4): 429-432(in Chinese)
|
Tripathi R D, Srivastava S, Mishra S, et al. Arsenic hazards: Strategies for tolerance and remediation by plants[J]. Trends in Biotechnology, 2007, 25(4): 158-165
|
张营营. 砷类化合物对生菜生理生化及生物累积的影响[D]. 北京: 中国地质大学(北京), 2022: 20-36 Zhang Y Y. Effects of arsenic compounds on physiology, biochemistry and bioaccumulation of lettuce[D]. Beijing: China University of Geosciences (Beijing), 2022: 20-36(in Chinese)
|
马瑞, 王海芳, 卢静, 等. 砷对小麦苗期生长的影响及降低砷毒性的措施[J]. 农业环境科学学报, 2022, 41(8): 1660-1670
Ma R, Wang H F, Lu J, et al. Effects of arsenic on wheat seedling growth and corresponding agronomic measures for toxicity mitigation[J]. Journal of Agro-Environment Science, 2022, 41(8): 1660-1670(in Chinese)
|
张晋龙, 黄颖, 吴丽芳, 等. 不同物候期水烛中砷、磷的亚细胞分布及其生理响应[J]. 植物生理学报, 2021, 57(4): 815-826
Zhang J L, Huang Y, Wu L F, et al. Subcellular distribution and physiological response of arsenic and phosphorus in Typha angustifolia at different phenological stages[J]. Plant Physiology Journal, 2021, 57(4): 815-826(in Chinese)
|
李冬琴, 陈桂葵, 郑海, 等. 镉对两品种玉豆生长和抗氧化酶的影响[J]. 农业环境科学学报, 2015, 34(2): 221-226
Li D Q, Chen G K, Zheng H, et al. Effects of cadmium on growth and antioxidant enzyme activities of two kidney bean (Phaseolus vulgaris L.) cultivars[J]. Journal of Agro-Environment Science, 2015, 34(2): 221-226(in Chinese)
|
蒙敏, 黄雪芬, 李磊, 等. 砷胁迫对桉树抗氧化酶活性的影响[J]. 基因组学与应用生物学, 2017, 36(12): 5289-5295
Meng M, Huang X F, Li L, et al. Effects of arsenic stress on activities of antioxidant enzymes of Eucalyptus[J]. Genomics and Applied Biology, 2017, 36(12): 5289-5295(in Chinese)
|
张晋龙, 黄颖, 吴丽芳, 等. 砷胁迫对狭叶香蒲生理生态及砷亚细胞分布的影响[J]. 生态环境学报, 2021, 30(5): 1042-1050
Zhang J L, Huang Y, Wu L F, et al. As subcellular distribution and physiological response of Typha angustifolia L. to As exposure[J]. Ecology and Environmental Sciences, 2021, 30(5): 1042-1050(in Chinese)
|
Tiwari S, Sarangi B K. Comparative analysis of antioxidant response by Pteris vittata and Vetiveria zizanioides towards arsenic stress[J]. Ecological Engineering, 2017, 100: 211-218
|
杨居荣, 贺建群, 蒋婉茹. Cd污染对植物生理生化的影响[J]. 农业环境保护, 1995, 14(5): 193-197
Yang J R, He J Q, Jiang W R. Effects of Cd pollution on the physiology and biochemistry of plant[J]. Agricultural Environmental Protection, 1995, 14(5): 193-197(in Chinese)
|
王春梅. 砷对不同基因型谷子生理生化特性的影响研究[D]. 太谷: 山西农业大学, 2019: 19-20
|
Zhang Y X, Chai T Y, Gérard B. Research progress on mechanisms of heavy metal tolerance in plants[J]. Acta Botanica Sinica, 1999, 41(5): 453-457
|
魏显有, 王秀敏, 刘云惠, 等. 土壤中砷的吸附行为及其形态分布研究[J]. 河北农业大学学报, 1999, 22(3): 28-30
, 55 Wei X Y, Wang X M, Liu Y H, et al. The study of the adsorptive behaviour of arsenic in soil and its form distribution[J]. Journal of Agricultural University of Hebei, 1999, 22(3): 28-30, 55(in Chinese)
|
丁娜, 林华, 张学洪, 等. 植物根系分泌物与根际微生物交互作用机制研究进展[J]. 土壤通报, 2022, 53(5): 1212-1219
Ding N, Lin H, Zhang X H, et al. Interaction mechanism between root secretion and rhizosphere microorganisms: A review[J]. Chinese Journal of Soil Science, 2022, 53(5): 1212-1219(in Chinese)
|
Beesley L, Inneh O S, Norton G J, et al. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil[J]. Environmental Pollution, 2014, 186: 195-202
|
Wang S L, Mulligan C N. Effect of natural organic matter on arsenic release from soils and sediments into groundwater[J]. Environmental Geochemistry and Health, 2006, 28(3): 197-214
|
吴香, 李娟, 曹艳, 等. 植物根系分泌物响应镉胁迫的研究进展[J]. 中国农业科技导报, 2023, 25(7): 12-20
Wu X, Li J, Cao Y, et al. Research advances on plant root exudates in response to cadmium stress[J]. Journal of Agricultural Science and Technology, 2023, 25(7): 12-20(in Chinese)
|
Bindraban P S, Dimkpa C O, Pandey R. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health[J]. Biology and Fertility of Soils, 2020, 56(3): 299-317
|
Lee C H, Wu C H, Syu C H, et al. Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As-contaminated paddy soils[J]. Geoderma, 2016, 270: 60-67
|
尹带霞. 稻田土壤中砷迁移转化及其机制的原位研究[D]. 南京: 南京大学, 2021: 5-8 Yin D X. The mechanism of arsenic mobility and transformation in paddy soils with in-situ sensor techniques[D]. Nanjing: Nanjing University, 2021: 5
-8(in Chinese)
|
Jeong Y, Fan M H, van Leeuwen J, et al. Effect of competing solutes on arsenic(Ⅴ) adsorption using iron and aluminum oxides[J]. Journal of Environmental Sciences (China), 2007, 19(8): 910-919
|
Lafferty B J, Ginder-Vogel M, Sparks D L. Arsenite oxidation by a poorly-crystalline manganese oxide. 3. Arsenic and manganese desorption[J]. Environmental Science & Technology, 2011, 45(21): 9218-9223
|
Fisher J C, Wallschläger D, Planer-Friedrich B, et al. A new role for sulfur in arsenic cycling[J]. Environmental Science & Technology, 2008, 42(1): 81-85
|
Das S, Chou M L, Jean J S, et al. Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulatorPteris vittata[J]. Journal of Hazardous Materials, 2017, 325: 279-287
|
Frémont A, Sas E, Sarrazin M, et al. Phytochelatin and coumarin enrichment in root exudates of arsenic-treated white lupin[J]. Plant, Cell & Environment, 2022, 45(3): 936-954
|
Zu Y Q, Li Z R, Mei X Y, et al. Transcriptome analysis of main roots of Panax notoginseng identifies genes involved in saponin biosynthesis under arsenic stress[J]. Plant Gene, 2018, 16: 1-7
|
Hinsinger P, Plassard C, Jaillard B. Rhizosphere: A new frontier for soil biogeochemistry[J]. Journal of Geochemical Exploration, 2006, 88(1-3): 210-213
|
王元昌, 李洁, 王玉富, 等. 不同根际促生菌对亚麻镉砷富集及植株生长的影响[J]. 中国麻业科学, 2021, 43(4): 198-204
Wang Y C, Li J, Wang Y F, et al. Study on different rhizosphere growth-promoting bacteria on agronomic characters and heavy metal cadmium and arsenic enrichment of flax[J]. Plant Fiber Sciences in China, 2021, 43(4): 198-204(in Chinese)
|
Mondal S, Pramanik K, Ghosh S K, et al. Unraveling the role of plant growth-promoting rhizobacteria in the alleviation of arsenic phytotoxicity: A review[J]. Microbiological Research, 2021, 250: 126809
|
Huang K, Chen C, Zhang J, et al. Efficient arsenic methylation and volatilization mediated by a novel bacterium from an arsenic-contaminated paddy soil[J]. Environmental Science & Technology, 2016, 50(12): 6389-6396
|
Kuramata M, Sakakibara F, Kataoka R, et al. Arsenic biotransformation by Streptomyces sp. isolated from rice rhizosphere[J]. Environmental Microbiology, 2015, 17(6): 1897-1909
|
Mallick I, Bhattacharyya C, Mukherji S, et al. Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: A step towards arsenic rhizoremediation[J]. The Science of the Total Environment, 2018, 610-611: 1239-1250
|
Ghosh P K, Maiti T K, Pramanik K, et al. The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity[J]. Chemosphere, 2018, 211: 407-419
|
Das S, Jean J S, Chou M L, et al. Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: Implications for mitigation of arsenic contamination in paddies[J]. Journal of Hazardous Materials, 2016, 302: 10-18
|
高鹏. 蜈蚣草非根际、根际及内生微生物对土壤砷污染的响应特征研究[D]. 上海: 东华大学, 2022: 30-43 Gao P. Response characteristics of non-rhizosphere, rhizosphere and endophytic microorganisms of Pteris vittata to arsenic pollution in soil[D]. Shanghai: Donghua University, 2022: 30
-43(in Chinese)
|
Bai J F, Lin X G, Yin R, et al. The influence of arbuscular mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils[J]. Applied Soil Ecology, 2008, 38(2): 137-145
|
韩永和. 根际土壤—微生物—蜈蚣草系统中砷的形态转化与解毒机制[D]. 南京: 南京大学, 2017: 44-46 Han Y H. Mechanisms of arsenic transformation and detoxification in the rhizosphere soil-microorganism-Pteris vittata system[D]. Nanjing: Nanjing University, 2017: 44
-46(in Chinese)
|
Cheng C, Nie Z W, He L Y, et al. Rice-derived facultative endophytic Serratia liquefaciens F2 decreases rice grain arsenic accumulation in arsenic-polluted soil[J]. Environmental Pollution, 2020, 259: 113832
|
Mahieu S, Frérot H, Vidal C, et al. Anthyllis vulneraria/Mesorhizobium metallidurans, an efficient symbiotic nitrogen fixing association able to grow in mine tailings highly contaminated by Zn, Pb and Cd[J]. Plant and Soil, 2011, 342(1): 405-417
|
Chhetri G, Kim I, Kang M, et al. Devosia rhizoryzae sp. nov., and Devosia oryziradicis sp. nov., novel plant growth promoting members of the genus Devosia, isolated from the rhizosphere of rice plants[J]. Journal of Microbiology, 2022, 60(1): 1-10
|
Das S, Chou M L, Jean J S, et al. Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem[J]. The Science of the Total Environment, 2016, 542(Pt A): 642-652
|
Drewniak L, Ciezkowska M, Radlinska M, et al. Construction of the recombinant broad-host-range plasmids providing their bacterial hosts arsenic resistance and arsenite oxidation ability[J]. Journal of Biotechnology, 2015, 196-197: 42-51
|