le Page G, Gunnarsson L, Snape J, et al. Integrating human and environmental health in antibiotic risk assessment:A critical analysis of protection goals, species sensitivity and antimicrobial resistance[J]. Environment International, 2017, 109:155-169
李鹏, 谭璐, 李林云, 等. 机舱空气环境耐药基因及耐药细菌的污染特征研究[J]. 生态毒理学报, 2019, 14(3):130-138 Li P, Tan L, Li L Y, et al. Characteristics of antibiotic resistant genes and resistant bacteria in the air environment of cabin[J]. Asian Journal of Ecotoxicology, 2019, 14(3):130-138(in Chinese)
Zhang K, Xin R, Zhao Z, et al. Antibiotic resistance genes in drinking water of China:Occurrence, distribution and influencing factors[J]. Ecotoxicology and Environmental Safety, 2020, 188:109837
Ahmed W, Zhang Q, Lobos A, et al. Precipitation influences pathogenic bacteria and antibiotic resistance gene abundance in storm drain outfalls in coastal sub-tropical waters[J]. Environment International, 2018, 116:308-318
段宇婧, 吴新颜, 陈则友, 等. 人体肠道耐药基因组的研究进展[J]. 生态毒理学报, 2020, 15(4):1-10 Duan Y J, Wu X Y, Chen Z Y, et al. Advances in human gut resistome[J]. Asian Journal of Ecotoxicology, 2020, 15(4):1-10(in Chinese)
Zhao X H, Lin C W, Wang J, et al. Advances in rapid detection methods for foodborne pathogens[J]. Journal of Microbiology and Biotechnology, 2014, 24(3):297-312
Berg G, Erlacher A, Smalla K, et al. Vegetable microbiomes:Is there a connection among opportunistic infections, human health and our gut feeling?[J]. Microbial Biotechnology, 2014, 7(6):487-495
European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016[J]. EFSA Journal European Food Safety Authority, 2017, 15(12):e05077
Liao X Y, Ma Y N, Daliri E B M, et al. Interplay of antibiotic resistance and food-associated stress tolerance in foodborne pathogens[J]. Trends in Food Science & Technology, 2020, 95:97-106
Liu C, Huang H, Zhou Q, et al. Antibacterial and antibiotic synergistic activities of the extract from Pithecellobium clypearia against clinically important multidrug-resistant gram-negative bacteria[J]. European Journal of Integrative Medicine, 2019, 32:100999
Kim N H, Yun A R, Rhee M S. Prevalence and classification of toxigenic Staphylococcus aureus isolated from refrigerated ready-to-eat foods (Sushi, Kimbab and California rolls) in Korea[J]. Journal of Applied Microbiology, 2011, 111(6):1456-1464
Turnbaugh P J, Ley R E, Mahowald M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122):1027-1031
Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490(7418):55-60
Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus[J]. Nature Reviews Endocrinology, 2016, 12(3):154-167
Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment[J]. Nature Medicine, 2015, 21(7):895-905
Rooks M G, Garrett W S. Gut microbiota, metabolites and host immunity[J]. Nature Reviews Immunology, 2016, 16(6):341-352
Oliver S P, Jayarao B M, Almeida R A. Foodborne pathogens in milk and the dairy farm environment:Food safety and public health implications[J]. Foodborne Pathogens and Disease, 2005, 2(2):115-129
Law J W F, Letchumanan V, Chan K G, et al. Insights into Detection and Identification of Foodborne Pathogens[M]//Foodborne Pathogens and Antibiotic Resistance. Hoboken, NJ, USA:John Wiley & Sons, Inc., 2017:153-201
Berger C N, Sodha S V, Shaw R K, et al. Fresh fruit and vegetables as vehicles for the transmission of human pathogens[J]. Environmental Microbiology, 2010, 12(9):2385-2397
Karch H, Denamur E, Dobrindt U, et al. The enemy within us:Lessons from the 2011 European Escherichia coli O104:H4 outbreak[J]. EMBO Molecular Medicine, 2012, 4(9):841-848
Brandl M T. Fitness of human enteric pathogens on plants and implications for food safety[J]. Annual Review of Phytopathology, 2006, 44:367-392
Maurice Bilung L, Sin Chai L, Tahar A S, et al. Prevalence, genetic heterogeneity, and antibiotic resistance profile of Listeria spp. and Listeria monocytogenes at farm level:A highlight of ERIC- and BOX-PCR to reveal genetic diversity[J]. BioMed Research International, 2018, 2018:3067494
Cerqueira F, Matamoros V, Bayona J, et al. Antibiotic resistance genes distribution in microbiomes from the soil-plant-fruit continuum in commercial Lycopersicon esculentum fields under different agricultural practices[J]. The Science of the Total Environment, 2019, 652:660-670
He L Y, Ying G G, Liu Y S, et al. Discharge of swine wastes risks water quality and food safety:Antibiotics and antibiotic resistance genes from swine sources to the receiving environments[J]. Environment International, 2016, 92-93:210-219
Cerqueira F, Matamoros V, Bayona J, et al. Distribution of antibiotic resistance genes in soils and crops. A field study in legume plants (Vicia faba L.) grown under different watering regimes[J]. Environmental Research, 2019, 170:16-25
Korir R C, Parveen S, Hashem F, et al. Microbiological quality of fresh produce obtained from retail stores on the Eastern Shore of Maryland, United States of America[J]. Food Microbiology, 2016, 56:29-34
Zhao Y H, Wang Q, Chen Z Y, et al. Significant higher airborne antibiotic resistance genes and the associated inhalation risk in the indoor than the outdoor[J]. Environmental Pollution, 2021, 268:115620
Rodloff A, Bauer T, Ewig S, et al. Susceptible, intermediate, and resistant:The intensity of antibiotic action[J]. Deutsches Arzteblatt International, 2008, 105(39):657-662
Wiegand I, Hilpert K, Hancock R E W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances[J]. Nature Protocols, 2008, 3(2):163-175
Bretonnière C, Maitte A, Caillon J, et al. MIC score, a new tool to compare bacterial susceptibility to antibiotics application to the comparison of susceptibility to different penems of clinical strains of Pseudomonas aeruginosa[J]. The Journal of Antibiotics, 2016, 69(11):806-810
Bonos E, Giannenas I, Sidiropoulou E, et al. Effect of Bacillus pumilus supplementation on performance, intestinal morphology, gut microflora and meat quality of broilers fed different energy concentrations[J]. Animal Feed Science and Technology, 2021, 274:114859
Abd-El-Kareem F, Elshahawy I E, Abd-Elgawad M M M. Application of Bacillus pumilus isolates for management of black rot disease in strawberry[J]. Egyptian Journal of Biological Pest Control, 2021, 31:25
Punja Z K, Tirajoh A, Collyer D, et al. Efficacy of Bacillus subtilis strain QST 713(Rhapsody) against four major diseases of greenhouse cucumbers[J]. Crop Protection, 2019, 124:104845
Zhao Y Y, Bi J F, Yi J Y, et al. Dose-dependent effects of apple pectin on alleviating high fat-induced obesity modulated by gut microbiota and SCFAs[J]. Food Science and Human Wellness, 2022, 11(1):143-154
Loncarevic S, Johannessen G S, Rørvik L M. Bacteriological quality of organically grown leaf lettuce in Norway[J]. Letters in Applied Microbiology, 2005, 41(2):186-189
Yu K, Newman M C, Archbold D D, et al. Survival of Escherichia coli O157:H7 on strawberry fruit and reduction of the pathogen population by chemical agents[J]. Journal of Food Protection, 2001, 64(9):1334-1340
Krumperman P H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods[J]. Applied and Environmental Microbiology, 1983, 46(1):165-170
蒲承君, 吕明环, 曾钰涵, 等. 鸡、猪粪便源大肠杆菌对4种抗生素耐药性的比较[J]. 生态毒理学报, 2017, 12(1):141-147 Pu C J, Lv M H, Zeng Y H, et al. Drug resistance to four antibiotics of Escherichia coli in chicken and pig feces[J]. Asian Journal of Ecotoxicology, 2017, 12(1):141-147(in Chinese)
MacDonald K L. The emergence of Escherichia coli O157:H7 infection in the United States[J]. JAMA, 1993, 269(17):2264
Cooley M, Carychao D, Crawford-Miksza L, et al. Incidence and tracking of Escherichia coli O157:H7 in a major produce production region in California[J]. PLoS One, 2007, 2(11):e1159
Reddy S P, Wang H, Adams J K, et al. Prevalence and characteristics of Salmonella serotypes isolated from fresh produce marketed in the United States[J]. Journal of Food Protection, 2016, 79(1):6-16
Chua P T C, Dykes G A. Attachment of foodborne pathogens to banana (Musa sp.) leaves[J]. Food Control, 2013, 32(2):549-551
Yanagida T, Shimizu N, Kimura T. Extraction of wax and functional compounds from fresh and dry banana leaves[J]. Japan Journal of Food Engineering, 2005, 6(1):79-87
Talley J L, Wayadande A C, Wasala L P, et al. Association of Escherichia coli O157:H7 with filth flies (Muscidae and Calliphoridae) captured in leafy greens fields and experimental transmission of E. coli O157:H7 to spinach leaves by house flies (Diptera:Muscidae)[J]. Journal of Food Protection, 2009, 72(7):1547-1552
Pepper I L, Brooks J P, Gerba C P. Antibiotic resistant bacteria in municipal wastes:Is there reason for concern?[J]. Environmental Science & Technology, 2018, 52(7):3949-3959
Li D L, Zhang H C, Chang F Q, et al. Distribution and health-ecological risk assessment of heavy metals:An endemic disease case study in southwestern China[J]. Environmental Science and Pollution Research International, 2022, 29(3):4260-4275
迟荪琳, 王卫中, 徐卫红, 等. 四环素类抗生素对不同蔬菜生长的影响及其富集转运特征[J]. 环境科学, 2018, 39(2):935-943 Chi S L, Wang W Z, Xu W H, et al. Effects of tetracycline antibiotics on growth and characteristics of enrichment and transformation in two vegetables[J]. Environmental Science, 2018, 39(2):935-943(in Chinese)
邵振鲁, 李厚禹, 李晓晨, 等. 农村固体废弃物中抗生素及耐药基因的赋存及风险管理[J]. 生态毒理学报, 2020, 15(4):112-122 Shao Z L, Li H Y, Li X C, et al. The occurrence and risk management of antibiotics and antibiotic resistant genes in rural solid waste[J]. Asian Journal of Ecotoxicology, 2020, 15(4):112-122(in Chinese)
Sazykin I S, Khmelevtsova L E, Seliverstova E Y, et al. Effect of antibiotics used in animal husbandry on the distribution of bacterial drug resistance (review)[J]. Applied Biochemistry and Microbiology, 2021, 57(1):20-30
Lee K, Kim D W, Lee D H, et al. Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance[J]. Microbiome, 2020, 8(1):2