[1] Li Q, Mahendra S, Lyon D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications[J]. Water research, 2008, 42: 4591-4602
[2] Tiwari D K, Behari J, Sen P. Application of nanoparticles in waste water treatment[J]. World Applied Sciences Journal, 2008, 3 (3): 417-433
[3] Hajipour M J, Fromm K M, Ashkarran A A, et al. Antibacterial properties of nanoparticles[J]. Trends in biotechnology, 2012, 30: 499-511
[4] Matthews L, Kanwar R K, Zhou S F, et al. Applications of nanomedicine in antibacterial medical therapeutics and diagnostics[J]. The Open Tropical Medicine Journal, 2010, 3: 1-9
[5] Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties[J]. Colloids and surfaces. B, Biointerfaces, 2010, 79: 5-18
[6] Azeredo H M C. Antimicrobial nanostructures in food packaging[J]. Trends in Food Science & Technology, 2013, 30: 56-69
[7] Vidic J, Stankic S, Haque F, et al. Selective antibacterial effects of mixed ZnMgO nanoparticles[J]. Journal of Nanoparticle Research, 2013, 15(5): 1595
[8] Rao Y, Wang W, Tan F, et al. Influence of different ions doping on the antibacterial properties of MgO nanopowders[J]. Applied Surface Science, 2013, 284: 726-731.
[9] Luo F, Wang W, Tan F, et al. Preparation and antibacterial activity of magnesium oxide nanoplates via sol-gel process[J]. Micro & Nano Letters, 2013, 8(9): 479-482
[10] Leung Y H, Ng A M, Xu X, et al. Mechanisms of Antibacterial Activity of MgO: Non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli[J]. Small, 2014, 10(6): 1171-1183
[11] Krishnamoorthy K, Manivannan G, Kim S J, et al. Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy[J]. Journal of Nanoparticle Research, 2012, 14(9): 1063-1072
[12] Makhluf S, Dror R, Nitzan Y, et al. Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide[J]. Advanced Functional Materials, 2005, 15(10): 1708-1715
[13] Sawai J, Kojima H, Igarashi H, et al. Antibacterial characteristics of magnesium oxide powder[J]. World Journal of Microbiology & Biotechnology, 2000, 16(2): 187-194
[14] Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay[J]. Journal of Microbiological Methods, 2003(2), 54: 177-182
[15] Sawai J, Yoshikawa T J. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay[J]. Journal of Applied Microbiology, 2004, 96(4): 803-809
[16] Jin T, He Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens[J]. Journal of Nanoparticle Research, 2011, 13(12): 6877-6885
[17] Mestres G, Ginebra M P. Novel magnesium phosphate cements with high early strength and antibacterial properties[J]. Acta Biomaterialia, 2011, 7(4): 1853-1861
[18] Lin Y J, Li D Q, Wang G, et al. Preparation and bactericidal property of MgO nanoparticles on gamma-Al2O3[J]. Journal of Materials Science-Materials in Medicine, 2005, 16(1): 53-56
[19] Akiyama H, Yamasaki O, Tada J, et al. Calcium oxide and magnesium oxide inhibit plasma coagulation by Staphylococcus aureus cells at the lower concentration than zinc oxide[J]. Journal of Dermatological Science, 1999, 22(1): 62-65
[20] 郭如新. 氧化镁及氢氧化镁的应用研究进展[J]. 精细与专用化学品, 2010, 18(12): 22-26
[21] 崔红梅, 武晓峰, 陈运法, 等.纳米氧化镁-卤素加合物新型抗菌材料研究与应用[J]. 硅酸盐通报, 2012, 3(16): 1472-1477
[22] 方晶晶, 许林军. 纳米氧化镁灭菌效果与抑菌能力研究[J]. 海军医学杂志, 2005, 26(1):12-14
[23] Perelshtein I, Applerot G, Perkas N, et al. Ultrasound radiation as a "throwing stones" technique for the production of antibacterial nanocomposite textiles[J]. ACS Applied Materials & Interfaces, 2010, 2(7): 1999-2004
[24] Dong C, Song D, Cairney J, et al. Antibacterial study of Mg(OH)2 nanoplatelets[J]. Materials Research Bulletin, 2011, 46(4): 576-582
[25] Sawai J, Kawada E, Kanou F, et al. Detection of active oxygen generated from ceramic powders having antibacterial activity[J]. Journal of Chemical Engineering of Japan, 1996, 29(4): 627-633
[26] 郑典模, 张浦, 肖文清, 等.纳米MgO改性涂料的制备及其抗菌性能研究[J]. 南昌大学学报工科版, 2007, 29(4): 315-322
[27] Dong C, Cairney J, Sun Q, et al. Investigation of Mg(OH)2 nanoparticles as an antibacterial agent[J]. Journal of Nanoparticle Research, 2009, 12(6): 2101-2109
[28] Vatsha B, Tetyana P, Shumbula P M, et al. Effects of precipitation temperature on nanoparticle surface area and antibacterial behaviour of Mg(OH)2 and MgO nanoparticles[J]. Journal of Biomaterials Nanobiotechnology, 2013, 4(4): 365-373
[29] Wang F, Ta N, Shen W J. MgO nanosheets, nanodisks, and nanofibers for the Meerwein-Ponndorf-Verley reaction[J]. Applied Catalysis A: General, 2014, 475: 76-81
[30] Al-Hazmi F, Alnowaiser F, Al-Ghamdi A A, et al. A new large-scale synthesis of magnesium oxide nanowires: Structural and antibacterial properties[J]. Superlattices and Microstructures, 2012, 52(2): 200-209
[31] Li H J, Li M L, Guo W L, et al. The effect of microstructure and crystal defect on electrochemical performances of MgO nanobelts[J]. Electrochimica Acta, 2014, 123: 103-110
[32] Zhang Y, Ma M, Zhang X, et al. Synthesis, characterization, and catalytic property of nanosized MgO flakes with different shapes[J]. Journal of Alloys and Compounds, 2014, 590: 373-379
[33] Cui H, Wu X, Chen Y, et al. Synthesis and characterization of mesoporous MgO by template-free hydrothermal method[J]. Materials Research Bulletin, 2014, 50: 307-311
[34] Yamamoto O, Sawai J, Kojima H, et al. Effect of mixing ratio on bactericidal action of MgO-CaO powders[J]. Journal of Materials Science-Materials in Medicine, 2002, 13(8): 789-792
[35] Avanzato C P, Follieri J M, Banerjee I A, et al. Biomimetic synthesis and antibacterial characteristics of magnesium oxide-germanium dioxide nanocomposite powders[J]. Journal of Composite Materials, 2009, 43(8): 897-910
[36] Yamamoto O, Ohira T, Alvarez K, et al. Antibacterial characteristics of CaCO3-MgO composites[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2010, 173(1/3): 208-212
[37] Koper O B, Klabunde J S, Marchin G L, et al. Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses, and toxins[J]. Current Microbiology, 2002, 44(1): 49-55
[38] Jeevanandam P, Klabunde K J. A study on adsorption of surfactant molecules on magnesium oxide nanocrystals prepared by an aerogel route[J]. Langmuir, 2002, 18(13): 5309-5313
[39] Stoimenov P K, Klinger R L, Marchin G L, et al. Metal oxide nanoparticles as bactericidal agents[J]. Langmuir, 2002, 18(17): 6679-6686
[40] Sawai J, Igarashi H, Hashimoto A, et al. Evaluation of growth-inhibitory effect of ceramics powder slurry on bacteria by conductance method[J]. Journal of Chemical Engineering of Japan, 1995, 28(3): 288-293
[41] Sawai J, Kojima H, Kano F, et al. Ames assay with Salmonella typhimurium TA102 for mutagenicity and antimutagenicity of metallic oxide powders having antibacterial activities[J]. World Journal of Microbiology & Biotechnology, 1998, 14(5): 773-775
[42] Yamamoto O, Sawai J, Sasamoto T. Change in antibacterial characteristics with doping amount of ZnO in MgO-ZnO solid solution[J]. International Journal of Inorganic Materials, 2000, 2(5): 451-454
[43] Yamamoto O, Fukuda T, Kimata M, et al. Antibacterial characteristics of MgO-mounted spherical carbons prepared by carbonization of ion-exchanged resin[J]. Journal of Chemical Engineering of Japan, 2001, 109: 363-365
[44] Huang L, Li D Q, Lin Y J, et al. Controllable preparation of Nano-MgO and investigation of its bactericidal properties[J]. Journal of Inorganic Biochemistry, 2005, 99(5): 986-993
[45] Krishnamoorthy K, Moon J Y, Hyun H B, et al. Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells[J]. Journal of Materials Chemistry, 2012, 22(47): 24610-24617
[46] Ohira T, Kawamura M, Iida Y, et al. Influence of the mixing ratio on antibacterial characteristics of MgO-ZnO solid solution in two phase coexistence region[J]. Journal of the Ceramic Society of Japan, 2008, 116(1359): 1234-1237
[47] Ohira T, Kawamura M, Fukuda M, et al. Extension of the optical absorption range in zn-doped mgo powders and its effect on antibacterial activity[J]. Journal of Materials Engineering and Performance, 2009, 19(3): 374-379
[48] Sawai J, Igarashi H, Hashimoto A, et al. Effect of particle size and heating temperature of ceramic powders on antibacterial activity of their slurries[J]. Journal of Chemical Engineering of Japan, 1996, 29(2): 251-256
[49] Hewitt C J, Bellara S R, Andreani A, et al. An evaluation of the anti-bacterial action of ceramic powder slurries using multi-parameter flow cytometry[J]. Biotechnology Letters, 2001, 23(9): 667-675
[50] Gulkova D, Solcova O, Zdrazil M. Preparation of MgO catalytic support in shaped mesoporous high surface area form [J]. Microporous and Mesoporous Materials, 2004, 76(1/3): 137-149
[51] Pan X, Wang Y, Chen Z, et al. Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 1137-1142
[52] Jiang W, Mashayekhi H, Xing B S. Bacterial toxicity comparison between nano- and micro-scaled oxide particles[J]. Environmental Pollution, 2009, 157(5): 1619-1625