氧化镁纳米材料抗菌机理的研究进展

张小乐, 朱雨荷, 李轻彩, 车晶, 江巍, 蔡亚岐. 氧化镁纳米材料抗菌机理的研究进展[J]. 环境化学, 2014, 33(9): 1538-1545. doi: 10.7524/j.issn.0254-6108.2014.09.014
引用本文: 张小乐, 朱雨荷, 李轻彩, 车晶, 江巍, 蔡亚岐. 氧化镁纳米材料抗菌机理的研究进展[J]. 环境化学, 2014, 33(9): 1538-1545. doi: 10.7524/j.issn.0254-6108.2014.09.014
ZHANG Xiaole, ZHU Yuhe, LI Qingcai, CHE Jing, JIANG Wei, CAI Yaqi. Research progress of the antibacterial mechanism of magnesium oxide nano-materials[J]. Environmental Chemistry, 2014, 33(9): 1538-1545. doi: 10.7524/j.issn.0254-6108.2014.09.014
Citation: ZHANG Xiaole, ZHU Yuhe, LI Qingcai, CHE Jing, JIANG Wei, CAI Yaqi. Research progress of the antibacterial mechanism of magnesium oxide nano-materials[J]. Environmental Chemistry, 2014, 33(9): 1538-1545. doi: 10.7524/j.issn.0254-6108.2014.09.014

氧化镁纳米材料抗菌机理的研究进展

  • 基金项目:

    国家自然科学基金项目(21377034,21277152);河北省科学技术研究与发展计划项目(11215183);环境化学与生态毒理学国家重点实验室开放基金项目(KF2011-28);中国博士后科学基金资助项目(2012M510573)资助.

Research progress of the antibacterial mechanism of magnesium oxide nano-materials

  • Fund Project:
  • 摘要: 氧化镁基纳米材料作为一类新型的抗菌材料,具有持久和广谱的抗菌活性,而且安全无毒、热稳定性好、无需光照诱导,因此成为抗菌消毒领域的研究热点,但是其抗菌机理一直存有争议.文章介绍了几种近年来被广泛接受的抗菌机理,以及利用先进的研究方法在氧化镁基纳米材料的抗菌机理研究方面所取得的最新进展,指出了其对新型无机纳米抗菌材料合成的指导意义.
  • 加载中
  • [1] Li Q, Mahendra S, Lyon D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications[J]. Water research, 2008, 42: 4591-4602
    [2] Tiwari D K, Behari J, Sen P. Application of nanoparticles in waste water treatment[J]. World Applied Sciences Journal, 2008, 3 (3): 417-433
    [3] Hajipour M J, Fromm K M, Ashkarran A A, et al. Antibacterial properties of nanoparticles[J]. Trends in biotechnology, 2012, 30: 499-511
    [4] Matthews L, Kanwar R K, Zhou S F, et al. Applications of nanomedicine in antibacterial medical therapeutics and diagnostics[J]. The Open Tropical Medicine Journal, 2010, 3: 1-9
    [5] Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties[J]. Colloids and surfaces. B, Biointerfaces, 2010, 79: 5-18
    [6] Azeredo H M C. Antimicrobial nanostructures in food packaging[J]. Trends in Food Science & Technology, 2013, 30: 56-69
    [7] Vidic J, Stankic S, Haque F, et al. Selective antibacterial effects of mixed ZnMgO nanoparticles[J]. Journal of Nanoparticle Research, 2013, 15(5): 1595
    [8] Rao Y, Wang W, Tan F, et al. Influence of different ions doping on the antibacterial properties of MgO nanopowders[J]. Applied Surface Science, 2013, 284: 726-731.
    [9] Luo F, Wang W, Tan F, et al. Preparation and antibacterial activity of magnesium oxide nanoplates via sol-gel process[J]. Micro & Nano Letters, 2013, 8(9): 479-482
    [10] Leung Y H, Ng A M, Xu X, et al. Mechanisms of Antibacterial Activity of MgO: Non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli[J]. Small, 2014, 10(6): 1171-1183
    [11] Krishnamoorthy K, Manivannan G, Kim S J, et al. Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy[J]. Journal of Nanoparticle Research, 2012, 14(9): 1063-1072
    [12] Makhluf S, Dror R, Nitzan Y, et al. Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide[J]. Advanced Functional Materials, 2005, 15(10): 1708-1715
    [13] Sawai J, Kojima H, Igarashi H, et al. Antibacterial characteristics of magnesium oxide powder[J]. World Journal of Microbiology & Biotechnology, 2000, 16(2): 187-194
    [14] Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay[J]. Journal of Microbiological Methods, 2003(2), 54: 177-182
    [15] Sawai J, Yoshikawa T J. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay[J]. Journal of Applied Microbiology, 2004, 96(4): 803-809
    [16] Jin T, He Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens[J]. Journal of Nanoparticle Research, 2011, 13(12): 6877-6885
    [17] Mestres G, Ginebra M P. Novel magnesium phosphate cements with high early strength and antibacterial properties[J]. Acta Biomaterialia, 2011, 7(4): 1853-1861
    [18] Lin Y J, Li D Q, Wang G, et al. Preparation and bactericidal property of MgO nanoparticles on gamma-Al2O3[J]. Journal of Materials Science-Materials in Medicine, 2005, 16(1): 53-56
    [19] Akiyama H, Yamasaki O, Tada J, et al. Calcium oxide and magnesium oxide inhibit plasma coagulation by Staphylococcus aureus cells at the lower concentration than zinc oxide[J]. Journal of Dermatological Science, 1999, 22(1): 62-65
    [20] 郭如新. 氧化镁及氢氧化镁的应用研究进展[J]. 精细与专用化学品, 2010, 18(12): 22-26
    [21] 崔红梅, 武晓峰, 陈运法, 等.纳米氧化镁-卤素加合物新型抗菌材料研究与应用[J]. 硅酸盐通报, 2012, 3(16): 1472-1477
    [22] 方晶晶, 许林军. 纳米氧化镁灭菌效果与抑菌能力研究[J]. 海军医学杂志, 2005, 26(1):12-14
    [23] Perelshtein I, Applerot G, Perkas N, et al. Ultrasound radiation as a "throwing stones" technique for the production of antibacterial nanocomposite textiles[J]. ACS Applied Materials & Interfaces, 2010, 2(7): 1999-2004
    [24] Dong C, Song D, Cairney J, et al. Antibacterial study of Mg(OH)2 nanoplatelets[J]. Materials Research Bulletin, 2011, 46(4): 576-582
    [25] Sawai J, Kawada E, Kanou F, et al. Detection of active oxygen generated from ceramic powders having antibacterial activity[J]. Journal of Chemical Engineering of Japan, 1996, 29(4): 627-633
    [26] 郑典模, 张浦, 肖文清, 等.纳米MgO改性涂料的制备及其抗菌性能研究[J]. 南昌大学学报工科版, 2007, 29(4): 315-322
    [27] Dong C, Cairney J, Sun Q, et al. Investigation of Mg(OH)2 nanoparticles as an antibacterial agent[J]. Journal of Nanoparticle Research, 2009, 12(6): 2101-2109
    [28] Vatsha B, Tetyana P, Shumbula P M, et al. Effects of precipitation temperature on nanoparticle surface area and antibacterial behaviour of Mg(OH)2 and MgO nanoparticles[J]. Journal of Biomaterials Nanobiotechnology, 2013, 4(4): 365-373
    [29] Wang F, Ta N, Shen W J. MgO nanosheets, nanodisks, and nanofibers for the Meerwein-Ponndorf-Verley reaction[J]. Applied Catalysis A: General, 2014, 475: 76-81
    [30] Al-Hazmi F, Alnowaiser F, Al-Ghamdi A A, et al. A new large-scale synthesis of magnesium oxide nanowires: Structural and antibacterial properties[J]. Superlattices and Microstructures, 2012, 52(2): 200-209
    [31] Li H J, Li M L, Guo W L, et al. The effect of microstructure and crystal defect on electrochemical performances of MgO nanobelts[J]. Electrochimica Acta, 2014, 123: 103-110
    [32] Zhang Y, Ma M, Zhang X, et al. Synthesis, characterization, and catalytic property of nanosized MgO flakes with different shapes[J]. Journal of Alloys and Compounds, 2014, 590: 373-379
    [33] Cui H, Wu X, Chen Y, et al. Synthesis and characterization of mesoporous MgO by template-free hydrothermal method[J]. Materials Research Bulletin, 2014, 50: 307-311
    [34] Yamamoto O, Sawai J, Kojima H, et al. Effect of mixing ratio on bactericidal action of MgO-CaO powders[J]. Journal of Materials Science-Materials in Medicine, 2002, 13(8): 789-792
    [35] Avanzato C P, Follieri J M, Banerjee I A, et al. Biomimetic synthesis and antibacterial characteristics of magnesium oxide-germanium dioxide nanocomposite powders[J]. Journal of Composite Materials, 2009, 43(8): 897-910
    [36] Yamamoto O, Ohira T, Alvarez K, et al. Antibacterial characteristics of CaCO3-MgO composites[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2010, 173(1/3): 208-212
    [37] Koper O B, Klabunde J S, Marchin G L, et al. Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses, and toxins[J]. Current Microbiology, 2002, 44(1): 49-55
    [38] Jeevanandam P, Klabunde K J. A study on adsorption of surfactant molecules on magnesium oxide nanocrystals prepared by an aerogel route[J]. Langmuir, 2002, 18(13): 5309-5313
    [39] Stoimenov P K, Klinger R L, Marchin G L, et al. Metal oxide nanoparticles as bactericidal agents[J]. Langmuir, 2002, 18(17): 6679-6686
    [40] Sawai J, Igarashi H, Hashimoto A, et al. Evaluation of growth-inhibitory effect of ceramics powder slurry on bacteria by conductance method[J]. Journal of Chemical Engineering of Japan, 1995, 28(3): 288-293
    [41] Sawai J, Kojima H, Kano F, et al. Ames assay with Salmonella typhimurium TA102 for mutagenicity and antimutagenicity of metallic oxide powders having antibacterial activities[J]. World Journal of Microbiology & Biotechnology, 1998, 14(5): 773-775
    [42] Yamamoto O, Sawai J, Sasamoto T. Change in antibacterial characteristics with doping amount of ZnO in MgO-ZnO solid solution[J]. International Journal of Inorganic Materials, 2000, 2(5): 451-454
    [43] Yamamoto O, Fukuda T, Kimata M, et al. Antibacterial characteristics of MgO-mounted spherical carbons prepared by carbonization of ion-exchanged resin[J]. Journal of Chemical Engineering of Japan, 2001, 109: 363-365
    [44] Huang L, Li D Q, Lin Y J, et al. Controllable preparation of Nano-MgO and investigation of its bactericidal properties[J]. Journal of Inorganic Biochemistry, 2005, 99(5): 986-993
    [45] Krishnamoorthy K, Moon J Y, Hyun H B, et al. Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells[J]. Journal of Materials Chemistry, 2012, 22(47): 24610-24617
    [46] Ohira T, Kawamura M, Iida Y, et al. Influence of the mixing ratio on antibacterial characteristics of MgO-ZnO solid solution in two phase coexistence region[J]. Journal of the Ceramic Society of Japan, 2008, 116(1359): 1234-1237
    [47] Ohira T, Kawamura M, Fukuda M, et al. Extension of the optical absorption range in zn-doped mgo powders and its effect on antibacterial activity[J]. Journal of Materials Engineering and Performance, 2009, 19(3): 374-379
    [48] Sawai J, Igarashi H, Hashimoto A, et al. Effect of particle size and heating temperature of ceramic powders on antibacterial activity of their slurries[J]. Journal of Chemical Engineering of Japan, 1996, 29(2): 251-256
    [49] Hewitt C J, Bellara S R, Andreani A, et al. An evaluation of the anti-bacterial action of ceramic powder slurries using multi-parameter flow cytometry[J]. Biotechnology Letters, 2001, 23(9): 667-675
    [50] Gulkova D, Solcova O, Zdrazil M. Preparation of MgO catalytic support in shaped mesoporous high surface area form [J]. Microporous and Mesoporous Materials, 2004, 76(1/3): 137-149
    [51] Pan X, Wang Y, Chen Z, et al. Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 1137-1142
    [52] Jiang W, Mashayekhi H, Xing B S. Bacterial toxicity comparison between nano- and micro-scaled oxide particles[J]. Environmental Pollution, 2009, 157(5): 1619-1625
  • 加载中
计量
  • 文章访问数:  2378
  • HTML全文浏览数:  2378
  • PDF下载数:  865
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-03-03
张小乐, 朱雨荷, 李轻彩, 车晶, 江巍, 蔡亚岐. 氧化镁纳米材料抗菌机理的研究进展[J]. 环境化学, 2014, 33(9): 1538-1545. doi: 10.7524/j.issn.0254-6108.2014.09.014
引用本文: 张小乐, 朱雨荷, 李轻彩, 车晶, 江巍, 蔡亚岐. 氧化镁纳米材料抗菌机理的研究进展[J]. 环境化学, 2014, 33(9): 1538-1545. doi: 10.7524/j.issn.0254-6108.2014.09.014
ZHANG Xiaole, ZHU Yuhe, LI Qingcai, CHE Jing, JIANG Wei, CAI Yaqi. Research progress of the antibacterial mechanism of magnesium oxide nano-materials[J]. Environmental Chemistry, 2014, 33(9): 1538-1545. doi: 10.7524/j.issn.0254-6108.2014.09.014
Citation: ZHANG Xiaole, ZHU Yuhe, LI Qingcai, CHE Jing, JIANG Wei, CAI Yaqi. Research progress of the antibacterial mechanism of magnesium oxide nano-materials[J]. Environmental Chemistry, 2014, 33(9): 1538-1545. doi: 10.7524/j.issn.0254-6108.2014.09.014

氧化镁纳米材料抗菌机理的研究进展

  • 1.  河北联合大学轻工学院, 唐山, 063000;
  • 2.  中国科学院生态环境研究中心, 北京, 100085
基金项目:

国家自然科学基金项目(21377034,21277152);河北省科学技术研究与发展计划项目(11215183);环境化学与生态毒理学国家重点实验室开放基金项目(KF2011-28);中国博士后科学基金资助项目(2012M510573)资助.

摘要: 氧化镁基纳米材料作为一类新型的抗菌材料,具有持久和广谱的抗菌活性,而且安全无毒、热稳定性好、无需光照诱导,因此成为抗菌消毒领域的研究热点,但是其抗菌机理一直存有争议.文章介绍了几种近年来被广泛接受的抗菌机理,以及利用先进的研究方法在氧化镁基纳米材料的抗菌机理研究方面所取得的最新进展,指出了其对新型无机纳米抗菌材料合成的指导意义.

English Abstract

参考文献 (52)

返回顶部

目录

/

返回文章
返回